

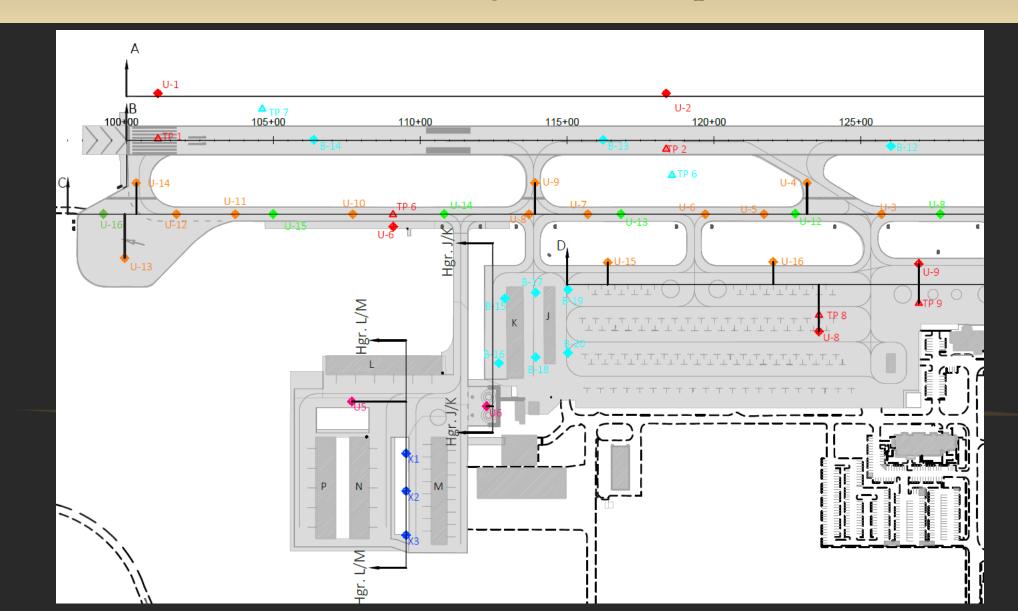
2020 Pavement Maintenance/ Management Plan

Presentation for the Truckee Tahoe Airport District July 28, 2021

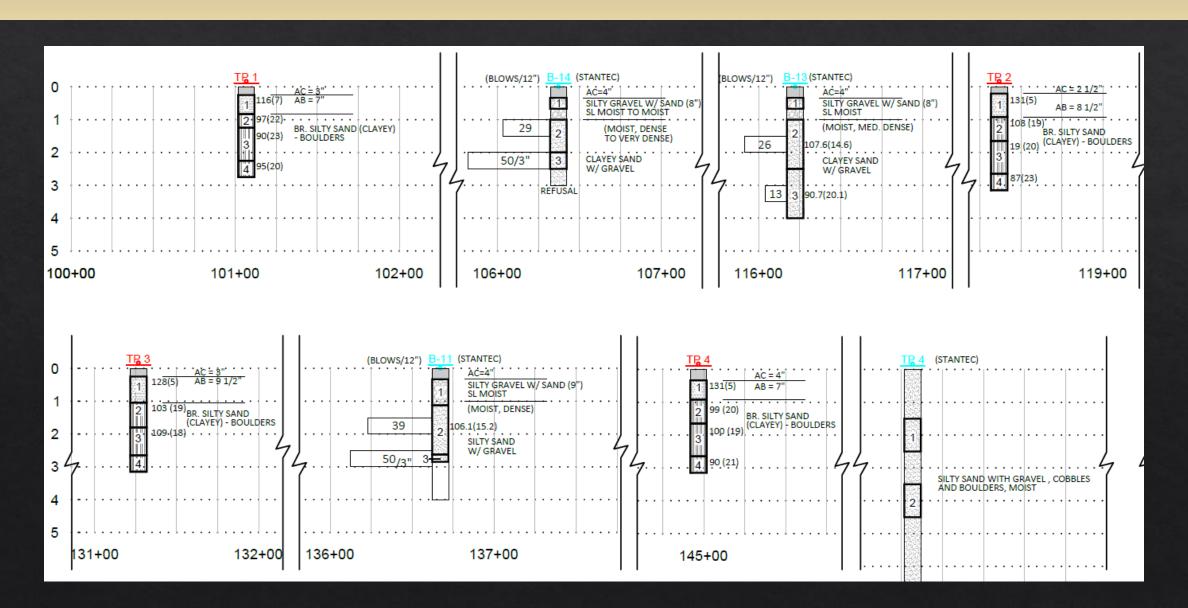
R. Damon Brandley, P.E.
Principal, Owner, Brandley Engineering

Pavement Maintenance / Management Plan

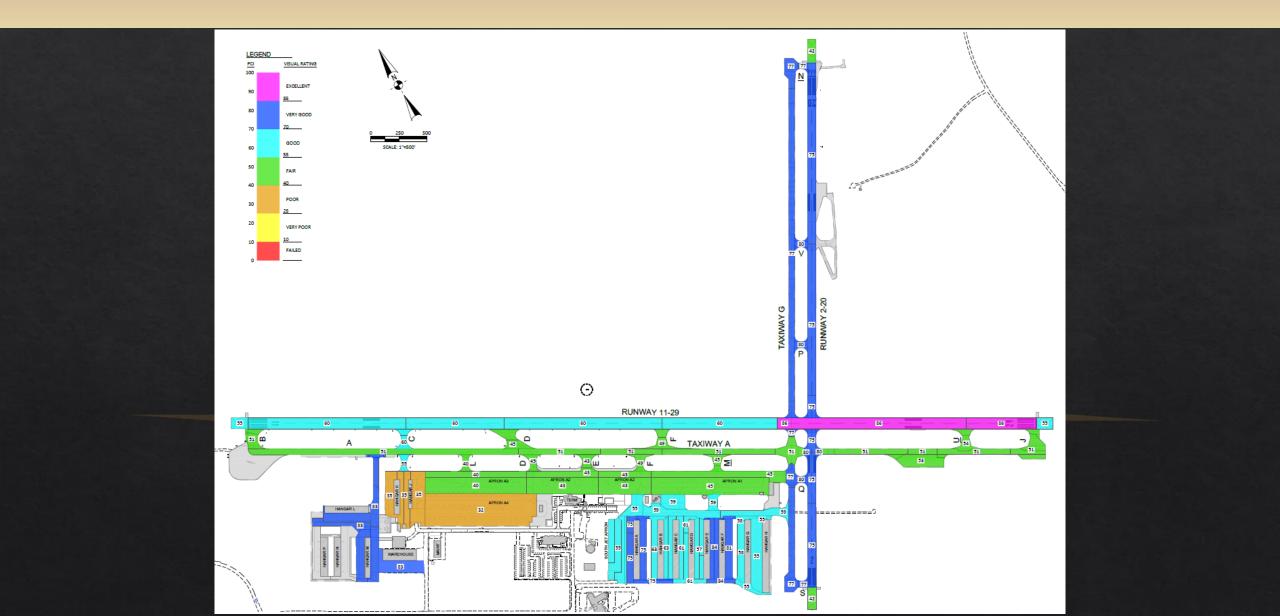
Why is this Study Necessary?

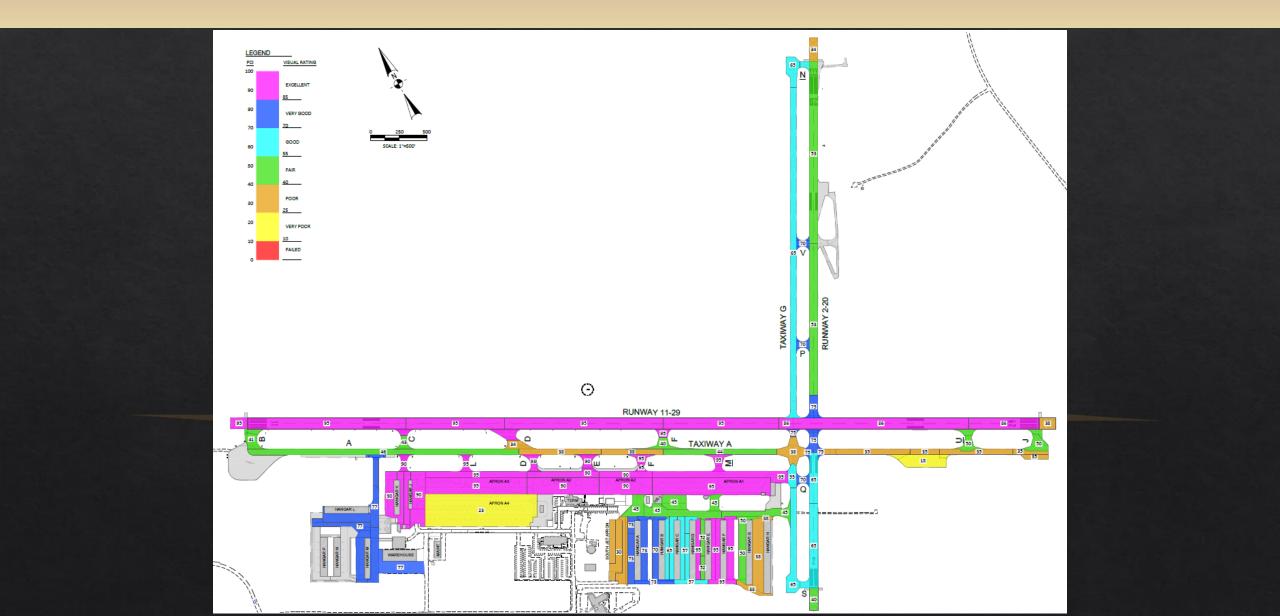

- → Required by FAA for Funding of Upcoming Pavement Projects (AIP Typically Funds 90% of Projects).
- → Provides Real Data and Forecast Pavement Failure Dates.
- → Provides a Comprehensive Plan to Maintain All Airfield Pavements in a Safe Condition (20 Year Plan)
- → Provides Basis to Develop the 5-year FAA Airport Capital Improvement Plan (ACIP)
- → Assists with Airport Budget Development

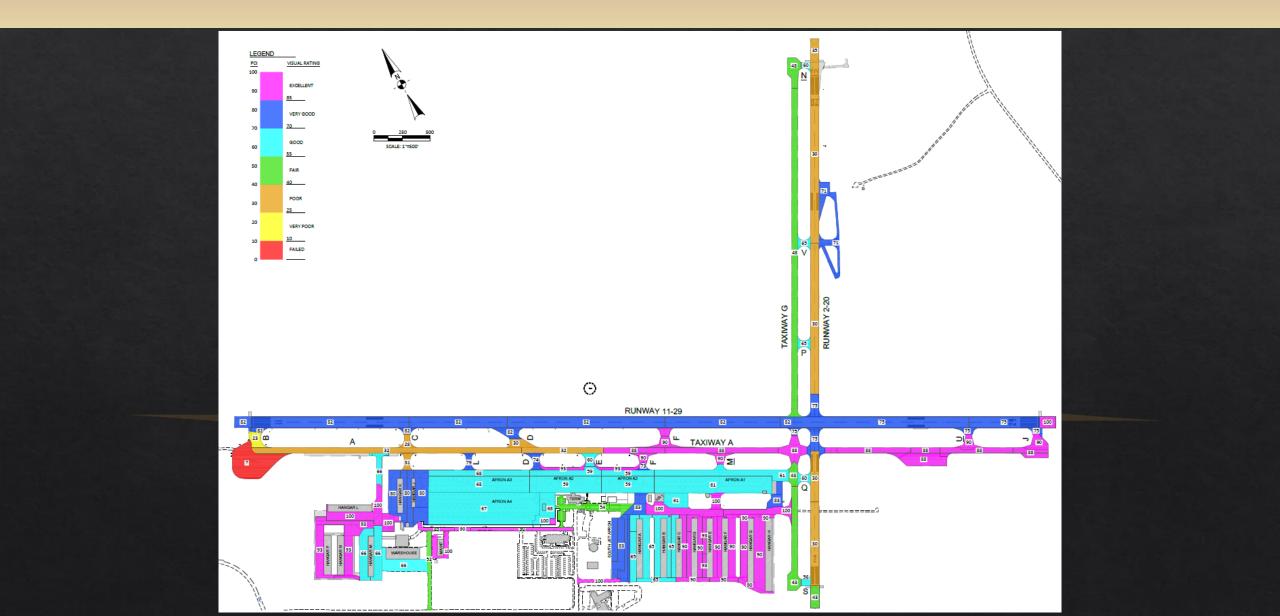
Pavement Maintenance / Management Plan


Key Components to Develop a PMMP

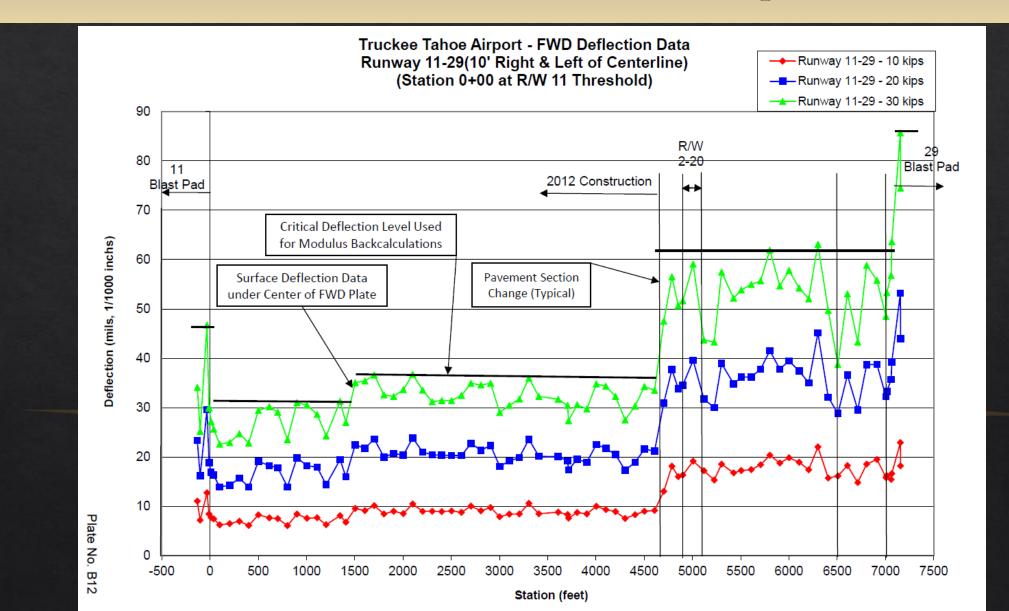
- → Data Collection
 - → Existing Soils Data and Pavement Section Thicknesses
 - → Pavement Visual Surveys
 - → FWD Testing (Non-Destructive Pavement Testing)
 - → Aircraft Traffic Forecasts
- → Data Analysis and Pavement Remaining Life Calculations
- → Surface and Deep-Seated Distress Pavement Rehabilitation Recommendations
- → Recommendations for Pavement Rehabilitation and Reconstruction Schedules
- → Estimated Construction Cost Estimates (Construction Only, Engineering Design & Oversight +30%)

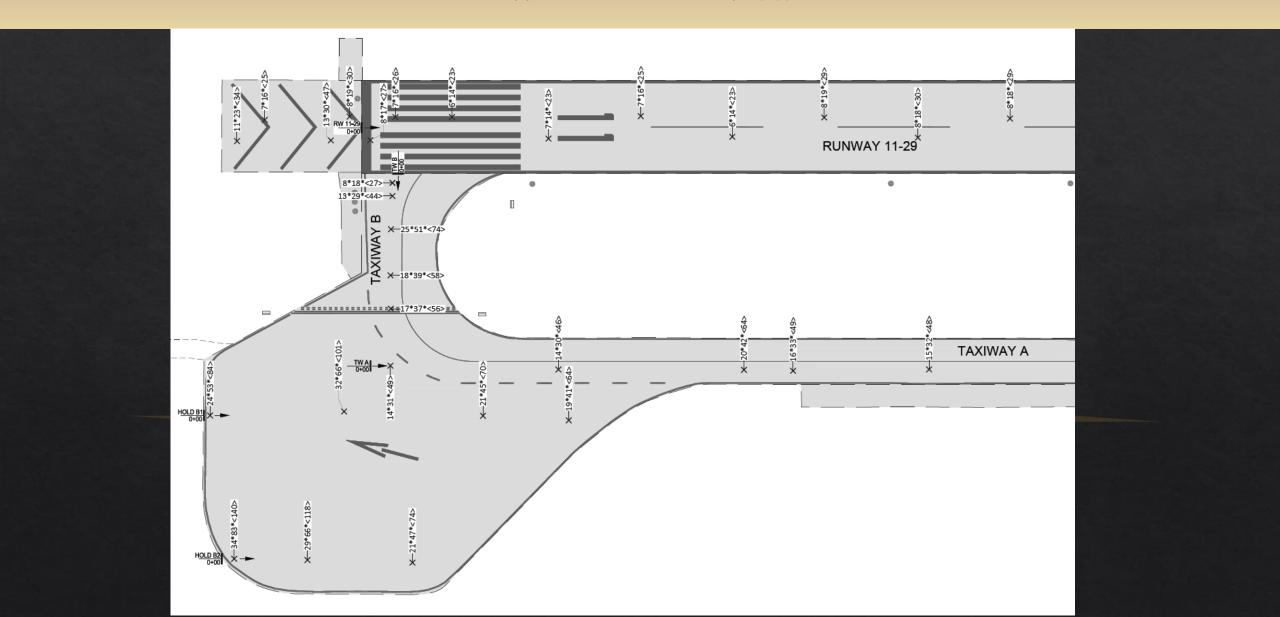

Soil Boring Location Map


Typical Soil Boring Profiles


TRUCKEE TAHOE AIRPORT (PMMP) 2011 PCI

TRUCKEE TAHOE AIRPORT (PMMP) 2014 PCI

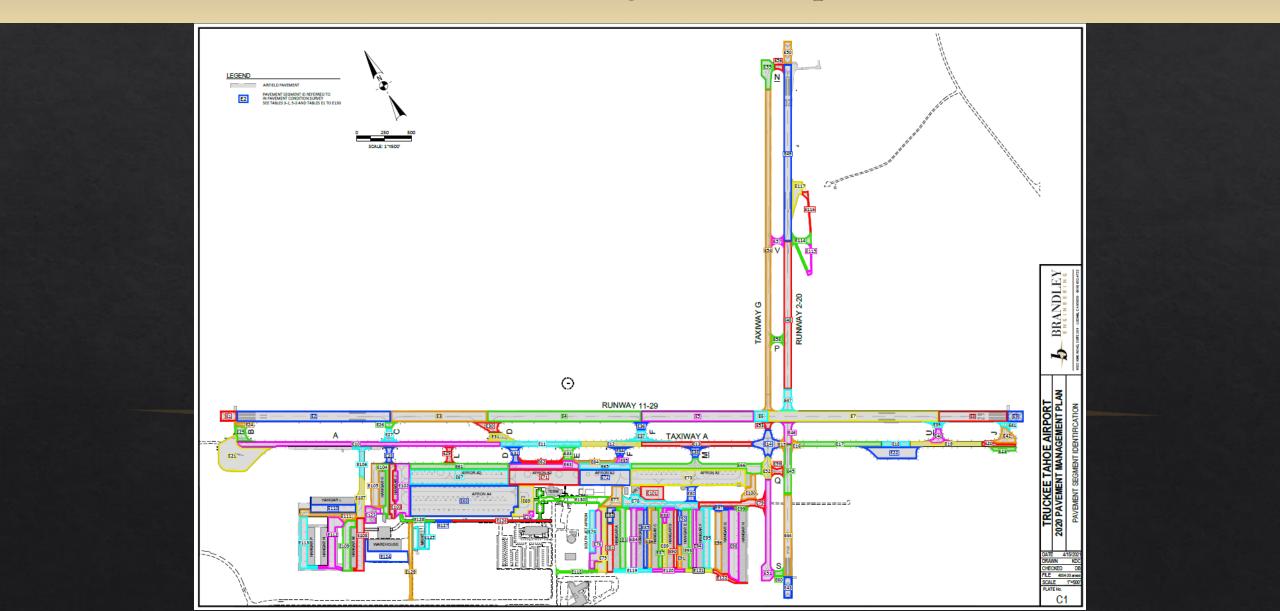

TRUCKEE TAHOE AIRPORT (PMMP) 2020 PCI


PCI Comparison – 2011, 2014, 2020

FWD Data - Center Deflection Graphs

FWD Data Plan View

Aircraft Traffic Index Summary


TABLE No. D1 - Traffic Index Summary - Truckee Tahoe Airport

					Traffic Index (Forecast Annual Aircraft Operations in 2019)														
Aircraft	Typical Aircraft	Aircraft Max	Gear	2019 Annual	Annual														
Group	Type	Loading (lbs)	Configuration	Operations	Growth Rate	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12	T13	T14
1	Piston	5,500	Single	21,000	1%	15,750	7,875	18,900	3,938	3,938	6,300	3,150	3,150	1,575	2,000	2,000	6,000	10,000	2,000
2	Turboprop	12,000	Single	7,900	3%	5,925	2,963	7,110	1,482	1,481	2,370	1,185	1,185	593	3,000	3,000	3,000	1,000	5,000
3	Jet	15,000	Single	440	6%	400	200	440	100	80	40	20	20	10	44	264	44	-	88
4	Jet	18,000	Single	480	6%	437	218	480	109	87	43	22	22	11	48	288	48		96
5	Jet	21,000	Dual	870	6%	792	396	870	198	158	78	39	39	20	87	522	87		174
6	Jet	24,000	Dual	600	3%	546	273	600	137	109	54	27	27	14	60	360	60		120
7	Jet	36,000	Dual	650	3%	592	296	650	148	118	59	29	29	15	65	390	65		130
8**	Jet	48,000	Dual	750	3%	683	341	750	171	137	68	34	34	17	75	450	75		150
9**	Jet	72,000	Dual	120	6%	120	60	120	30		-	-	-		10	108	10		-
10**	Jet	84,000	Dual	120	6%	120	60	120	30		-	-	-		10	108	10		-
11**	Jet	96,000	Dual	100	6%	100	50	100	25		-	-	-		5	90	5		-
12	Plow Trucks	40,000	Single	-	0%	200	200	200	200	200	200	200	200	200	200	200	200	50	120
13	Snow Blowers	50,000	Single	-	0%	120	120	120	120	120	120	120	120	120	60	60	60	20	40
14	Automobile	4,000	Single	-	2%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15	Delivery Trucks	38,000	Dual Axle	-	2%	-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{** -} Denotes an Aircraft Group that has operations doubled in the "Enhanced Traffic" analysis.

					Traffic Index (Forecast Annual Aircraft Operations in 2019)														
Aircraft	Typical Aircraft	Aircraft Max	Gear	2019 Annual	Annual														
Group	Type	Loading (lbs)	Configuration	Operations	Growth Rate	T15	T16	T17	T18	T19	T20	T21	T22	T23	T24	T25	T26	T27	T28
1	Piston	5,500	Single	21,000	1%	9,000	10,000	1,000	500	500	500	1,500	3,000	-	-	-	-	-	-
2	Turboprop	12,000	Single	7,900	3%	5,000	5,000	-	750	500	500	500	-	-	-	-	-	-	-
3	Jet	15,000	Single	440	6%	-	320	-	20	50	50	100	-	-	-	-	-	-	-
4	Jet	18,000	Single	480	6%	-	360	-	20	20	20	20	-	-	-	-	-	-	-
5	Jet	21,000	Dual	870	6%	-	750	-	-	300	100	300	-	-	-	-	-	-	-
6	Jet	24,000	Dual	600	3%	-	550	-	-	-	-	-	-	-	-	-	-	-	-
7	Jet	36,000	Dual	650	3%	-	200	-	-		-	-	-	-	-	-	-	-	-
8**	Jet	48,000	Dual	750	3%	-	200	-	-		-	-	-	-	-	-	-	-	-
9**	Jet	72,000	Dual	120	6%	-	-	-	-		-	-	-	-	-		-	-	-
10**	Jet	84,000	Dual	120	6%	-	-	-	-		-	-	-	-	-		-	-	-
11**	Jet	96,000	Dual	100	6%	-	-	-	-		-	-	-		-		-	-	-
12	Plow Trucks	40,000	Single	-	0%	80	200	120	120	120	120	120	-	400	80	80	80	80	200
13	Snow Blowers	50,000	Single	-	0%	20	120	-	-	5	-	5	-	240	20	20	20	20	120
14	Automobile	4,000	Single	-	2%	-	-	-	-		-	-	-	-	110,000	10,000	100,000	18,000	-
15	Delivery Trucks	38,000	Dual Axle	-	2%	-	-	-	-	-	-	-	-	-	-	4,000	2,000	-	-
** - Deno	otes an Aircraft Gr	oup that has o	perations double	ed in the "Enha	nced Traffic" ai	nalysis.													

Pavement Segment ID Map

Pavement Maintenance / Management Plan

BRANDLEY PAVEMENT EXPERTISE

<u>Pavement Maintenance</u> <u>Management Plans</u>

- → Evaluates Both Surface Distress and Deep-Seated Distress
- → PCI Analysis of Surface Distress
- → FWD Testing (Pavement Strength Testing)
- → Back Calculate Modulus of Elasticity of Each Pavement Layer
- → Traffic Analysis & Apply Traffic to Existing Pavement Sections with Back Calculated Moduli
- → Determination of Remaining Life Using Brandley Fatigue Analysis (also Check FAARFIELD)
- → Recommended Rehabilitation Schedules

Brandley Fatigue Analysis

- → Developed By Reinard W. Brandley as Doctoral Thesis at Harvard University Under Dr. Karl Terzaghi and Dr. Arthur Casagrande
- → Utilizes Layered Elastic Theory Under Applied Aircraft Loads
- → 68 Year Successful Performance Record with 90-95% Accuracy
- → Proven More Accurate than FAA's FAARFIELD Program

Remaining Life Analysis

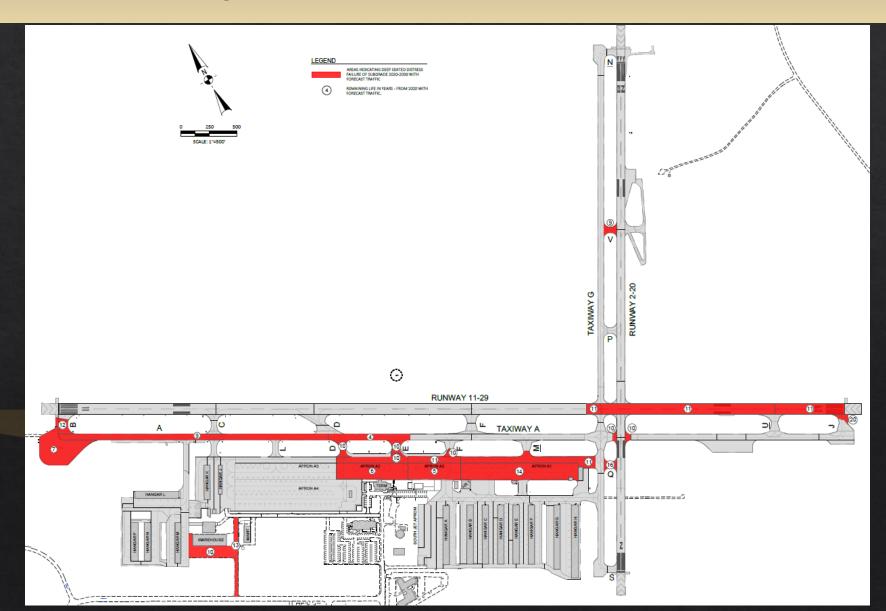
BRANDLEY vs. FAARFIELD

HISTORCAL COMPARISON

Airport	Facility	Forecast Remaining (Deep-Seated DEBRANDLEY	• •	Actual Life*
Sacramento International Airport	Runway 16L-34R	5	0.25	5.1
Stockton Metropolitan Airport	Runway 11-29	6 to 8	22	7
Nashville International Airport	Existing Apron Taxiway	3	0.1	3
Truckee-Tahoe Airport	Runway 11-29 (East)	16	1	10+**

^{*}Number of years to actual failure.

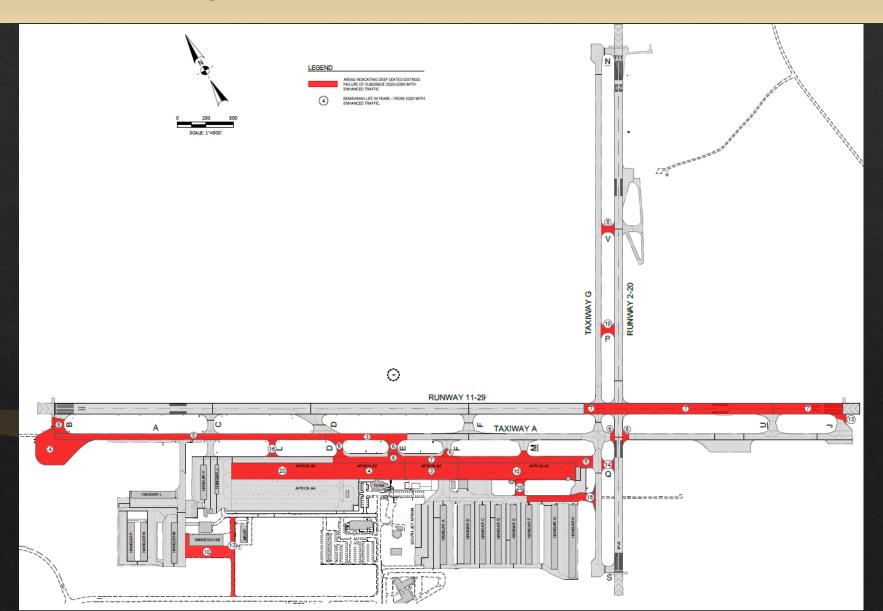
2020 KTRK PMMP DATA


Pavement Element	Station	Forecast Remaining Life (Years) (Deep-Seated Distress Only)					
		BRANDLEY	FAARFIELD				
Runway 11-29 (west)	23+00 to 37+00	57	2,490				
Runway 11-29 (east)	48+75 to 64+25	11	4				
Taxiway A	0+00 to 24+00	9	3				
Runway 2-20	17+00 to 30+50	36	150				
Taxiway G	9+00 to 11+00	45	101				
Apron A1	See Plate 5-1 & 5-2	14	0.5				
Apron A2 (west)	See Plate 5-1 & 5-2	6	1.6				
Hangar C (east)	See Plate 5-1 & 5-2	47	11				
Warehouse	See Plate 5-1 & 5-2	10	2				

^{**}This section of the runway performed under forecast loading for 8 to 10 years with no sign of deep-seated distress. According to FAARFIELD it should have had structural failure 7 to 9 years earlier. This 2020 study indicates this section is forecast for failure in 2029.

Pavement Remaining Life – Forecast Traffic

Remaining Life


- → Forecast Traffic
- → Predicted Failures in 20 years
- → Brandley Fatigue Analysis

Pavement Remaining Life – Enhanced Traffic

Remaining Life

- → Enhanced Traffic (2 x 40k Jets)
- → Predicted Failures in 20 years
- → Brandley Fatigue Analysis

Deep Seated Distress - Remaining Pavement Life

TABLE NO. 4-2 TRUCKEE TAHOE AIRPORT REHABILITATION PLAN - DEEP-SEATED DISTRESS

	KEHADIEH AHON FEAT - DEEL - SEALED DISTRESS												
Estimated Date of Rehabilitation	Element	Station	Remaining Life (Years) from 2020		Code*	Recommended Rehabilitation Description							
2021	Taxiway A	0+00 to 24+00	9	2029	A1	Reconstruction							
2021	Taxiway A	24+00 to 31+25	4	2024	A1	Reconstruction							
2021	Taxiway B Runup	See Plates 5-1 & 5-2	7	2027	A1	Reconstruction (with Taxiway A)							
2021	Taxiway B	0+50 to 1+75	12	2032	A1	Reconstruction (with Taxiway A)							
2023	Taxiway ∨	0+00 to 1+25	9	2029	A2	Reconstruction (with Runway 2-20)							
2023	Taxiway Q	0+00 to 1+25	16	2036	A2	Reconstruction (with Runway 2-20)							
2024	Apron A2	See Plates 5-1 & 5-2	6	2026	A3	Reconstruction							
2024	Taxiways D(south), E, & F(south)	See Plates 5-1 & 5-2	10	2030	А3	Reconstruction (with Apron A2)							
2024	Taxilane Q	12+50 to 25+50	10-11	2030-2031	А3	Reconstruction (with Apron A2)							
2026	Runway 11-29 (East)	47+00 to 70+00	11	2031	A4	Reconstruction and Groove Runway							
2026	Taxiway A	49+50 to 49+75 50+50 to 51+00	10	2030	A4	Reconstruction (with Runway 11-29 (East))							
2026	Taxiway J	0+00 to 0+50	20	2040	A4	Reconstruction (with Runway 11-29 (East))							
2029	Apron A1	See Plates 5-1 & 5-2	14	2034	A3	Reconstruction							
2029	Warehouse	See Plates 5-1 & 5-2	10	2030	A5	Reconstruction							
2032	Aviation Way	See Plates 5-1 & 5-2	13	2033	A 5	Reconstruction							
2038	Taxiway L	0+25 to 1+75	21	2041	A3	Reconstruction (with Apron A3)							

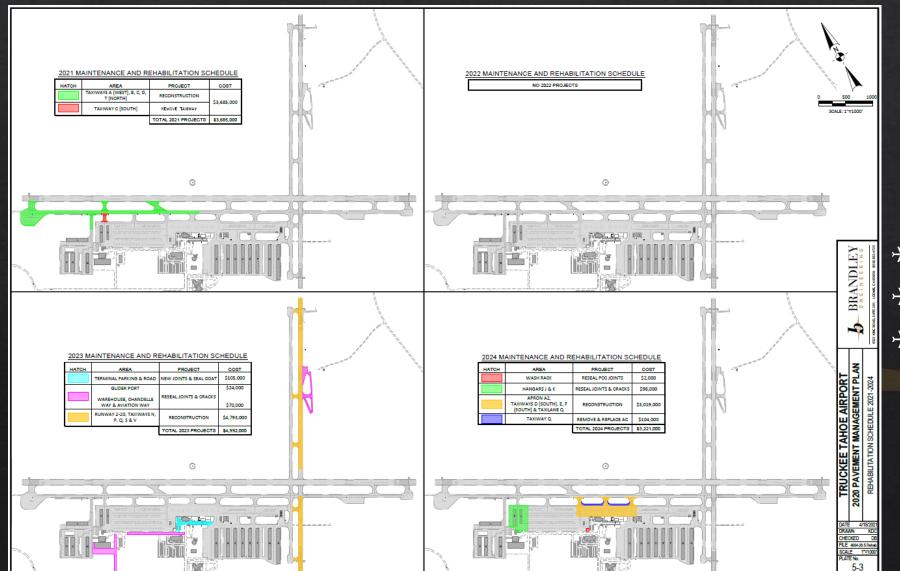
See Table 4-1 or 4-3 for Rehabilitation Code details.

NOTE: Rehabilitation of pavement sections should be scheduled a minimum of 2 to 3 years before estimated date of failure.

Pavement Section Summary Data Sheets

Remarks:

	TABLE No. E7 - PAVEMENT DATA AND REHABILITATION SCHEDULE												
Airport:		Truckee	Tahoe A	Airport			Date of Survey:	October 17-19, 2019 & May 2020					
Element:	Runway 11	-29											
Station:	48+75 to 64+25												
Dimensions:	1,550' x 100'												
	Layer	Thickness (ir	nches)	E (ksi)	μ	K (pci)		Remarks					
Existing	PCC	-	-	-	-								
Pavement	AC	4		300	0.35	-							
Section:	СТВ	-		-	-	-							
	AB	8		60	0.35	-							
	ASB	-		-	-	-							
	n/a	-		-	-	-							
	n/a	-		-	-	-							
	Subgrade	48		12	0.35	-							
	Subsoil	Semi-Infin	ite	20	0.35	-							
Construction	Record:	Date					Туре						
		1963	Original Construction										
		1986, 2008	Reconstruction										
						•							


Pavement Condition Survey Data:											
Surface Con	dition:	Weather	ing: Light	nt Ravelling: None			Rutting: None				
AC Pavement,	AC Pavement, Grooved, Joints @ 12.5' spacing. Older joints 3/4" wide, up to 1.5" wide. New joints 1/2" wide.										
Band-aid seala	nt in tact. S	ealant depresse	ed in older	r joints	. Few very fine	cracks on o	corners.				
P	CI (2011) =	86	Р	CI (20	13) = 86		PCI (2020) = 75				
Visual Pave	ment Rating	(PCI 2020) = \	Very Good	d		PCI	N (2020) = 10 F/C/Y/T				
Pavement Ren	naining Life	Analysis		Brandley - Fatigue Analysis							
	Traffic Inde	x Used				T1					
FWD Critical Cer	nter Plate Defle	ection (Range) - 30	K Load	62 (38-63)							
Pavement Laye	er Analyzed (F	orecast/Enhanced	Traffic)	Subgrade (Forecast Traffic)			Subgrade (Enhanced Traffic)				
Pavement Str	ucture Layer	Remaining Life -	Years	11			7				
Recommende	d Pavemen	t Rehabilitation	ı Schedu	le:							
	Rehab.										
Time Period	Code				Date and Desc	ription					
2021-2025		None Scheduled									
2026-2030	A4	2026 - Reconstruction, Groove									
2031-2035		None Scheduled									
2036-2040	F, G1	2040 - New Joints, Seal Coat									

FWD deflection used is the critical value for section - See FWD Graphs, Plates B12 thru B94. See Plates E1 & E2 for Location and Station of this Section. For Traffic Index see Table D1.

Enhanced Traffic doubles the operations of jets that are 48,000 lb or heavier.

See Plates B1 thru B11 for FWD test data and locations.

Pavement Rehabilitation Schedules

Rehab Schedules

- → Graphical Depiction by Year
- → Individual Project Costs
- → Type of Rehabilitation

Summary of Pavement Section Changes

Table 5-1
Summary of Pavement Section Changes from 2011 to 2020
Truckee Tahoe Airport

Pavement Segment ID (2020)				ment Su ata (PC		Mod	lulus of Ela	asticity (E)	- ksi	Remaining Pavement Fatigue Analysis (Brandley)		
(See Plate			2011	2013	2020	2011	2020	2011	2020	2011 Remaining Life /	2020 Remaining Life /	
5-1)		Ct-ti (2020)	2011	2013	2020	2011	2020			Anticipated Date of Failure-	Anticipated Date of Failure-	
3-1)	Element.	Station (2020)	DOL	DO1	DO1			Subgrade/		Subgrade (Forecast Traffic)	Subgrade (Forecast Traffic)	Comments
	Element	(See Plate 5-2)	PCI	PCI	PCI	AC / AB	AC / AB	Subsoil	Subsoil	Subgrade (Forecast Trailic)	Subgrade (Forecast Trailic)	
E7	Runway 11-29	48+75 to 64+25	86	86	75	250 / 40	300 / 60	10/25	12/20	18 years, Failure in 2029	11 years, Failure in 2031	Significant Jet Traffic Increase, Subsoil Strength Decrease
E11	Taxiway A	24+00 to 31+25	51	38	32	250 / 30	250 / 65	15/25	15/30	20+ years, Failure in 2031+	4 years, Failure in 2024	Significant Jet Traffic Increase
E21	Taxiway B Runup	Runup Apron	-	22	7	n/a	150/25	n/a	12 / 25	n/a	7 years, Failure in 2027	Significant Jet Traffic Increase
E25	Taxiway B	0+50 to 1+75	51	41	23	250/30	350 / 50	15/30	18/30	20+ years, Failure in 2031+	12 years, Failure in 2032	Significant Jet Traffic Increase
E32	Taxiway D (south)	0+25 to 1+75	45	93	74	350 / 80	350 / 70	15 / 25	20 / 25	20+ years, Failure in 2031+	10 years, Failure in 2030	Significant Jet Traffic Increase
E33	Taxiway E	0+25 to 1+50	43	90	60	350 / 80	350 / 80	15/25	20 / 25	20+ years, Failure in 2031+	10 years, Failure in 2030	Significant Jet Traffic Increase
E44	Runway 2-20	0+00 to 7+50	75	65	30	250 / 40	150/30	12/25	12/20	20+ years, Failure in 2031+	20+ years, Failure in 2040+	Increase in Traffic, AB & AC Strength Decrease
E49	Runway 2-20	30+50 to 46+54	75	53	30	350 / 70	250/50	11/25	12/20	20+ years, Failure in 2031+	20+ years, Failure in 2040+	Increase in Traffic, AB & AC Strength Decrease
E52	Taxiway G	9+00 to 11+00	77	55	43	250 / 40	150/30	12/25	12/20	20+ years, Failure in 2031+	20+ years, Failure in 2040+	Increase in Traffic, AB & AC Strength Decrease
E57	Taxiway V	0+00 to 1+25	80	70	65	100/20	200/30	7/25	10/20	21 years, Failure in 2032	9 years, Failure in 2029	Traffic Increase, Subsoil Strength Decrease
E72	Apron A2	Apron A2 (east)	43	90	59	250 / 70	200 / 40	20 / 25	10/20	16 years, Failure in 2027	5 years, Failure in 2025	Significant Jet Traffic Increase, AC, AB, Subsoil Strength Decrease
E73	Apron A1	Apron A1	45	95	61	250 / 70	150/30	20 / 25	15/30	11 years, Failure in 2022	14 years, Failure in 2034	2011 PMMP assumed too much Jet Traffic, AC, AB, Subsoil Strength Decrease
E83	Hangar A (east)	All	75	73	65	250 / 20	200 / 40	10/25	8/20	20+ years, Failure in 2031+	20+ years, Failure in 2040+	AC, AB, Subsoil Strength Decrease
E87	Hangar C (east)	All	61	57	90	250 / 70	150/30	20 / 25	10/20	20+ years, Failure in 2031+	20+ years, Failure in 2040+	AC, AB, Subsoil Strength Decrease

Pavement Maintenance / Management Plan

Summary of Findings

- → Pavements are in good condition, Previous PMMP has been followed very well
- → Full Reconstructions vs. Surface Rehabilitations
- → 20 Year Rehabilitation Plan Approximately \$41,000,000 of Pavement Construction Costs
- → Recommended Pavement Rehabilitation and Maintenance for All Pavement Sections
- → Significant Recommended Projects and Timeline
 - → 2023 Reconstruct Runway 2-20
 - → 2024 Terminal Apron A2 Reconstruction
 - → 2026 Reconstruct Runway 11-29 (East) Including Runway Intersection
 - → 2027 Mill and Fill Runway 11-29 (West)
 - → 2029 Reconstruct Apron A1 (East of Terminal Apron)
 - → 2038 Reconstruct Apron A3 (West of Terminal Apron)

Questions?

Damon Brandley

You Hire Brandley, You Get Brandley

Melissa Brandley