WILDEPHOR

Wildephor Consulting Services, LLC 481 N Santa Cruz Ave #280 Los Gatos, CA 95030 USA +1 510 845 0016

June 8, 2022

Jennifer Callaway Town of Truckee 10183 Truckee Airport Road Truckee, CA 96161

RE: Truckee Bioenergy Scoping Study – Findings and Recommendations

Wildephor Consulting Services, LLC has completed the bioenergy project scoping study and subsequent refinement effort on behalf of the Town of Truckee and its partners, Truckee Fire Protection District (TFPD) and Truckee Tahoe Airport District (TTAD). The scoping study was initially undertaken to evaluate the potential for using green waste from local defensible space and forest fuels management activities to produce heat and/or power for a cluster of five facilities located at and around the Truckee Tahoe Airport, thereby offsetting fossil fuel consumption while reducing greenhouse gas (GHG) emissions and the risk of catastrophic wildfires (see Attachment 1 for utility costs and usage for the identified facility cluster). The scoping study included a series of tasks to determine whether such a project warrants a more in-depth feasibility assessment to support potential capital investment in a bioenergy facility fueled by locally generated organic wastes. The initial scoping study was conducted from March 2022 through May 2022.

A total of seven (7) candidate solutions along with the baseline case of continuing to dispose of green waste at the Tahoe Truckee Sierra Disposal (TTSD) Eastern Regional Landfill (ERL) were evaluated using a multidimensional scorecard approach (see results in Attachment 5). Based on those results, the project team has identified two (2) candidate technologies that it believes should be investigated further as a means of addressing issues related to local green waste disposal. These two candidates, described in more detail below, are 1) biomass power generation using a gasifier with an electric generator; and 2) a modular combined heat and biochar (CHAB) system based on biomass pyrolysis. These two candidates could be further evaluated in a single feasibility assessment along with a market study of biochar, as outlined in the sections that follow.

Since completing the initial scoping study, the project team has determined that two disposal options which originally seemed promising for near-term management of green waste, both

based on air curtain burner technologies, are not currently viable due to various operational and permitting challenges. Consequently, the two bioenergy systems described below are the only feasible pathways for long-term reuse of local organic waste that remain from the original set of seven candidate solutions.

Option A: Biomass Power

Several different power generation options were evaluated as part of the bioenergy project scoping study, namely, 1) an air curtain burner coupled with an organic Rankine cycle (ORC) generator; 2) a biomass gasification and generator system; and 3) a biomass boiler system combined with an ORC generator. Based on a range of triple bottom line factors as depicted in the scorecards in Attachment 5, the biomass gasification system was judged to be the most promising biopower candidate for the particular application being considered by the Town and is partners.

Biomass gasification is a thermochemical conversion process whereby biomass feedstock is heated in an oxygen-limited environment, preventing combustion and instead producing a hydrocarbon-rich synthesis gas ("syngas") that can then be either combusted in a gas turbine or internal combustion engine, or chemically converted to other liquid or gaseous biofuels. The evaluation was based on a representative floating fixed-bed gasifier having a nameplate capacity of 1.0 megawatt electric (MWe), which was sized to roughly match the quantity of high quality fuel estimated to be available as implementation of recently passed Measure T is ramped up over the next several years. More specifically, a model of projected green waste quantities developed with the partners (see Attachment 2) estimates a total of about 12,000 bone dry tons (BDT) of biomass being produced by annual defensible space and forest fuels treatment efforts. Of that material, it is believed that approximately half will be sufficiently high quality woody material of the type normally desired for gasification (as opposed to pine needles, leaves, brush, or other similar materials). Consistent with that preliminary estimate, a 1.0 MWe gasifier would consume approximately 6,000 BDT of wood chips annually during year-round operations.

The primary source of revenue for a biomass power system would be from a power purchase agreement (PPA) negotiated with Truckee Donner Public Utility District (TDPUD). With such an agreement, the partners would be guaranteed a long-term (e.g., 20 years) revenue stream from electricity sold into the regional grid at a stable price. For the operating expense model developed as part of the scoping study (see summary in Attachment 3) and based on initial discussions with TDPUD staff, a PPA purchase price of \$0.10 per kilowatt-hour (kWh) was assumed. Further evaluation of a potential PPA pricing structure would be undertaken by TDPUD in parallel with a more detailed bioenergy project feasibility assessment should one be pursued by the partners.

A secondary source of revenue from a biomass gasification facility would be biochar sales. Biochar is a charcoal-like byproduct of biomass conversion processes such as gasification and pyrolysis that can be used for a range of purposes including as a soil amendment, a water and air filtration medium, and a construction material additive, among others. The market for biochar is rapidly evolving and consequently presents significant uncertainty, and it may not represent a reliable revenue source in the near term. Biochar does, however, provide a significant means of carbon sequestration, thus making this alternative more attractive than most others included in the scoping study in terms of its environmental benefits. A summary of available GHG emissions reductions for all the candidate technologies considered in the scoping study is provided in Attachment 4.

An additional important potential benefit of the proposed biopower generation option could be the ability to establish an islanded microgrid in the vicinity of the biomass power plant. Such a microgrid could allow critical municipal facilities to continue operating during Public Safety Outage Management (PSOM) events or other unscheduled grid outages. Based on a preliminary review with TDPUD staff of existing and planned electrical grid infrastructure, it appears that an islanded microgrid could be established to supply backup power to the Truckee Tahoe Airport, Truckee Fire Station 96 (including the co-located airport well and pump station), and the Truckee Town Hall and Truckee Police Department. Further analysis will be required to confirm system capacity and operating parameters, but at this time initial indications are that a microgrid powered by a 1.0 MWe gasification system sited on or near TTAD property would be able to serve most if not all of these critical electrical loads during main grid outages.

Option B: Combined Heat and Biochar

A second potentially viable option for the productive reuse of local green waste is a combined heat and biochar (CHAB) system using pyrolysis as the biomass conversion technology. This would be a "thermally-led" approach in that the energy content of biomass feedstocks would be converted into heat, with biochar and possibly a relatively small amount of electricity also being produced as co-products. Pyrolysis is a heat induced thermal decomposition process similar in many respects to gasification, but one that takes place in the absence of oxygen. This generally produces a greater proportion of biochar (25-30% by weight of the feedstock) compared with gasification (5-10% by weight), often along with bio-oil that can be converted into other biofuels.

The largest source of revenue from this option would be from biochar sales. As shown in the operating expense model summary included in Attachment 3, biochar sales could represent more than 80% of annual project revenues, enough to cover all the estimated plant operating costs as well as the disposal costs for residual organic material not utilized by the pyrolysis system. Additional revenues totaling more than \$150,000 per year could be generated from offsetting heating and electrical utility costs at Truckee Tahoe Airport facilities. As noted in the summary of the biomass power option above, however, biochar presents a great deal of uncertainty in terms of its pricing and reliability as a revenue stream. Therefore, the intent of the proposed biochar market study would be to reduce some of that uncertainty such that the economic value of the biochar could be more accurately estimated.

Two key potential advantages of the CHAB option are its significantly lower capital cost and its modularity. As shown in the scorecards for each candidate (see Attachment 5), the capital

cost of a 1.0 MWe biomass power plant based around gasification technology is estimated to be in the range of \$15 million. A comparably sized CHAB system—that is, one sized to use the amount of feedstock anticipated to be available within the next 3-5 years—is estimated to cost around \$7 million. Beyond its much lower initial capital cost, the payback period is estimated to be shorter based on its marginally higher annual revenues coupled with greater avoided green waste disposal costs. Second, and perhaps even more importantly, a CHAB system could be designed to be modular, such that additional units could be added in the future if local green waste streams continued to increase. For purposes of the scoping study, four (4) pyrolysis units each having a thermal output of just under 1.0 MWth were used to estimate feedstock throughput, annual operating expenses, and system outputs (i.e., heat, biochar, and behind-the-meter electricity generated using process waste heat). A summary of estimated operating expenses and revenues for a combined heat and biochar system are provided in Attachment 3.

As shown in the estimated available GHG emissions reductions included in Attachment 4, the CHAB system could produce the greatest carbon sequestration benefit of all the candidate technologies considered in the scoping study. In fact, this option could sequester more than three times as much carbon dioxide equivalent (CO2e) as the biomass power option, due to its significantly higher production of biochar. It should be noted that biochar, particularly when used as a soil amendment, can sequester up to 3 tons of CO2e for every ton of biomass feedstock used, far exceeding the GHG emissions reductions available from offsetting utility purchases and avoiding in situ biomass decomposition *combined*. Unfortunately, based on discussions with staff from the California Department of Resources Recycling and Recovery (CalRecycle), use of biochar is not currently eligible for meeting the Town's organic recycling targets established under Senate Bill (SB) 1383.

Finally, the CHAB option also could offer another unique co-benefit in the form of hydronic snow melt for portions of the Truckee Tahoe Airport. Hydronic snow melt systems utilize cross-linked polyethylene (PEX) piping embedded in paved areas to circulate hot water for surface snow removal. Based on the quantities of organic waste that the partners expect to generate, an appropriately-sized CHAB system could produce enough supplemental heat to provide hot water for snow melting along high-traffic areas of the airport property such as the main apron. Although installation of hydronic snow melt systems can be relatively costly, the excess available waste heat from a pyrolysis plant could allow such a system to be cost-effective if it were able to offset sufficient snow removal expenses. TTAD management has expressed interest in evaluating this possibility further as part of a more detailed bioenergy project feasibility assessment.

Recommendations

Based on the findings highlighted above, it is recommended that the Town and its partners conduct a more in-depth feasibility assessment of both 1) the biomass power option using gasification; and 2) the combined heat and biochar option using pyrolysis, as two potentially viable methods of productively reusing locally generated organic wastes. A market study of biochar as a potentially merchantable co-product of either biomass conversion process also

should be conducted to better assess its possible financial contributions to any future capital project that may be undertaken by the partners.

The cost of completing a detailed feasibility assessment for these two candidate bioenergy solutions is estimated to be \$90,000. An additional \$30,000 would be required to conduct a market study of biochar in parallel with the feasibility assessment. Together these analyses could provide the Town and its partners with a substantive basis for determining whether capital investment in a bioenergy plant would be warranted. They would include conceptual system designs, more refined capital and operating cost estimates, feedstock procurement and management strategies, and life-cycle pro forma financial models, among other items. Town of Truckee staff are currently pursuing several grant opportunities that could fund a portion or all of this next analysis phase.

Project Timeline

Assuming that the necessary funding is available and that the partners decide to go forward with a feasibility assessment and biochar market study, those analyses could be completed in approximately nine (9) months. That would put the partners on a path to being ready to engage an engineering design firm as early as summer 2023, with a detailed design package and subsequent procurement activities possibly allowing the partners to break ground on construction of a bioenergy facility sometime in 2024. While certainly possible, this timeline may be somewhat optimistic in light of current supply chain issues and labor shortages, and therefore should be considered preliminary.

Wildephor appreciates having had the opportunity to perform this important work for the Town of Truckee and its partners, and remains available for further consultation related to the scoping study as well as for additional professional services that may be desired.

Attachments

- 1. Partner Utility Costs and Usage
- 2. Partner Green Waste Summary
- 3. Operating Expense Summary
- 4. Available GHG Emissions Reductions
- 5. Candidate Solution Scorecards
- CC: Bill Seline, Truckee Fire Protection District Robb Etnyre, Truckee Tahoe Airport District

ATTACHMENT 1

Partner Utility Costs and Usage

SUMMARY - PARTNER TOTAL UTILITY COSTS

2018 -	ANNUAL	\$	40,565.81	\$	123,773.65	\$ 164,339.47				
2021	MONTHLY	\$	3,380.48	\$	10,314.47	\$ 13,694.96				
Month	Date		Natural Gas		Electricity	Total Cost				
			(\$)		(\$)	(\$)				
			,		,	,				
1	Oct-18	\$	2,190.15	\$	10,532.63	\$ 12,722.78				
2	Nov-18	\$	5,291.96	\$	9,963.01	\$ 15,254.97				
3	Dec-18	\$	6,715.83	\$	8,928.78	\$ 15,644.61				
4	Jan-19	\$	6,568.90	\$	12,434.72	\$ 19,003.62				
5	Feb-19	\$	8,697.63	\$	13,914.68	\$ 22,612.31				
6	Mar-19	\$	5,104.20	\$	10,163.44	\$ 15,267.64				
7	Apr-19	\$	2,805.68	\$	8,855.11	\$ 11,660.79				
8	May-19	\$	2,545.74	\$	8,941.66	\$ 11,487.40				
9	Jun-19	\$	1,004.91	\$	10,895.09	\$ 11,900.00				
10	Jul-19	\$	769.83	\$	10,062.04	\$ 10,831.87				
11	Aug-19	\$	746.05	\$	12,317.20	\$ 13,063.25				
12	Sep-19	\$	1,795.57	\$	10,646.55	\$ 12,442.12				
Year 1	Total	\$	44,236.45	\$	127,654.91	\$ 171,891.36				
	Average	\$	3,686.37	\$	10,637.91	\$ 14,324.28				
13	Oct-19	\$	3,070.95	\$	9,193.72	\$ 12,264.67				
14	Nov-19	\$	5,314.66	\$	10,824.43	\$ 16,139.09				
15	Dec-19	\$	6,514.84	\$	10,183.20	\$ 16,698.04				
16	Jan-20	\$	6,485.40	\$	10,251.79	\$ 16,737.19				
17	Feb-20	\$	6,168.73	\$	11,117.60	\$ 17,286.33				
18	Mar-20	\$	4,925.17	\$	10,096.31	\$ 15,021.48				
19	Apr-20	\$	2,098.31	\$	8,451.47	\$ 10,549.78				
20	May-20	\$	1,280.88	\$	8,709.27	\$ 9,990.15				
21	Jun-20	\$ \$	840.29	\$	8,590.45	\$ 9,430.74				
22	Jul-20		614.84	\$	9,525.86	\$ 10,140.70				
23	Aug-20	\$	586.76	\$	11,671.39	\$ 12,258.15				
24	Sep-20	\$	777.49	\$	10,724.32	\$ 11,501.81				
Year 2	Total	\$	38,678.32	\$	119,339.81	\$ 158,018.13				
	Average	\$	3,223.19	\$	9,944.98	\$ 13,168.18				
25	Oct-20	\$	1,613.73	\$	10,204.40	\$ 11,818.13				
26	Nov-20	\$	5,431.68	\$	9,531.66	\$ 14,963.34				
27	Dec-20	\$	6,511.83	\$	9,527.37	\$ 16,039.20				
28	Jan-21	\$	6,234.13	\$	11,366.96	\$ 17,601.09				
29	Feb-21	\$	5,862.17	\$	10,523.58	\$ 16,385.75				
30	Mar-21	\$	5,019.86	\$	9,796.07	\$ 14,815.93				
31	Apr-21	\$	2,849.92	\$	10,576.55	\$ 13,426.47				
32	May-21	\$	1,703.06	\$	9,438.75	\$ 11,141.81				
33	Jun-21	\$	908.23	\$	9,245.38	\$ 10,153.61				
34	Jul-21	\$	763.04	\$	12,628.00	\$ 13,391.04				
35	Aug-21	\$	890.95	\$	11,535.64	\$ 12,426.59				
36	Sep-21	\$ 994.07		\$ 9,951.88		\$ 10,945.95				
Year 3	Total	\$	38,782.67	\$	124,326.24	\$ 163,108.91				
	Average	\$	3,231.89	\$	10,360.52	\$ 13,592.41				

SUMMARY - PARTNER NATURAL GAS USAGE

2018 -	ANNUAL	3,834	\$	40,565.81		25%
2021	MONTHLY	319	\$	3,380.48	\$	10.58
Month	Date	Usage		Total Cost	-	Unit Cost
		(MMBtu)		(\$)		(\$/MMBtu)
1	Oct-18	223	\$	2,190.15	\$	9.81
2	Nov-18	539	\$	5,291.96	\$	9.82
3	Dec-18	618	\$	6,715.83	\$	10.87
4	Jan-19	626	\$	6,568.90	\$	10.50
5	Feb-19	894	\$	8,697.63	\$	9.73
6	Mar-19	498	\$	5,104.20		10.25
7	Apr-19	271	\$	2,805.68	\$ \$	10.35
8	May-19	237	\$ \$ \$	2,545.74	\$	10.74
9	Jun-19	84	\$	1,004.91	\$	11.99
10	Jul-19	64	\$	769.83	\$	11.97
11	Aug-19	61	\$	746.05	\$	12.17
12	Sep-19	167	\$ \$	1,795.57	\$	10.75
Year 1	Total	4,282	\$	44,236.45		-
	Average	357	\$	3,686.37	\$	10.33
13	Oct-19	293	\$	3,070.95	\$	10.49
14	Nov-19	506	\$	5,314.66	\$	10.50
15	Dec-19	629	\$ \$ \$ \$	6,514.84	\$	10.37
16	Jan-20	619	\$	6,485.40	\$ \$	10.47
17	Feb-20	492	\$	6,168.73	\$	12.54
18	Mar-20	504	\$	4,925.17	\$	9.77
19	Apr-20	217	\$	2,098.31	\$	9.67
20	May-20	127	\$ \$ \$ \$	1,280.88		10.08
21	Jun-20	79	\$	840.29	\$ \$	10.66
22	Jul-20	57	\$	614.84	\$	10.75
23	Aug-20	55	\$	586.76	\$	10.73
24	Sep-20	70	\$ \$	777.49	\$	11.09
Year 2	Total	3,648	\$	38,678.32		-
	Average	304	\$	3,223.19	\$	10.60
25	Oct-20	161	\$	1,613.73	\$	10.05
26	Nov-20	541	\$	5,431.68	\$	10.05
27	Dec-20	670	\$	6,511.83	\$	9.73
28	Jan-21	573	\$ \$ \$ \$	6,234.13	\$ \$	10.88
29	Feb-21	540	\$	5,862.17		10.85
30	Mar-21	443	\$	5,019.86	\$	11.34
31	Apr-21	266	\$	2,849.92	\$	10.71
32	May-21	131	\$ \$ \$ \$ \$ \$	1,703.06	\$ \$	12.97
33	Jun-21	66	\$	908.23	\$	13.87
34	Jul-21	53	\$	763.04	\$	14.45
35	Aug-21	61	\$	890.95	\$	14.70
36	Sep-21	69		994.07	\$	14.51
Year 3	Total	3,572	\$	38,782.67		-
	Average	298	\$	3,231.89	\$	10.86

SUMMARY - PARTNER ELECTRICITY USAGE

2018 -	ANNUAL	782,371	\$	123,773.65		75%
2021	MONTHLY	65,198	\$	10,314.47	\$	0.158
Month	Date	Usage		Total Cost		Unit Cost
		(kWh)		(\$)		(\$/kWh)
1	Oct-18	70,829	\$	10,532.63	\$	0.149
2	Nov-18	67,757	\$	9,963.01	\$	0.147
3	Dec-18	53,142	\$	8,928.78	\$	0.168
4	Jan-19	87,245	\$	12,434.72	\$	0.143
5	Feb-19	95,121	\$	13,914.68	\$	0.146
6	Mar-19	66,038	\$	10,163.44	\$	0.154
7	Apr-19	56,228	\$	8,855.11	\$	0.157
8	May-19	56,593	\$	8,941.66	\$	0.158
9	Jun-19	71,920	\$	10,895.09	\$	0.151
10	Jul-19	65,447	\$	10,062.04	\$	0.154
11	Aug-19	81,474	\$	12,317.20	\$	0.151
12	Sep-19	69,460	\$	10,646.55	\$	0.153
Year 1	Total	841,254	\$	127,654.91		-
	Average	70,105	\$	10,637.91	\$	0.152
13	Oct-19	58,667	\$	9,193.72	\$	0.157
14	Nov-19	71,625	\$	10,824.43	\$	0.151
15	Dec-19	66,024	\$	10,183.20	\$	0.154
16	Jan-20	62,970	\$	10,251.79	\$	0.163
17	Feb-20	68,677	\$	11,117.60	\$	0.162
18	Mar-20	62,191	\$	10,096.31	\$	0.162
19	Apr-20	49,996	\$	8,451.47	\$	0.169
20	May-20	53,585	\$ \$	8,709.27	\$	0.163
21	Jun-20	52,356		8,590.45	\$	0.164
22	Jul-20	57,944	\$	9,525.86	\$	0.164
23	Aug-20	73,375	\$	11,671.39	\$	0.159
24	Sep-20	66,894	\$	10,724.32	\$	0.160
Year 2	Total	744,304	\$	119,339.81		-
	Average	62,025	\$	9,944.98	\$	0.160
			1	40.000	<u>ـ</u>	_
25	Oct-20	64,526	\$	10,204.40	\$	0.158
26	Nov-20	58,509	\$	9,531.66	\$	0.163
27	Dec-20	58,091	\$	9,527.37	\$	0.164
28	Jan-21	70,246	\$	11,366.96	\$ ¢	0.162
29 20	Feb-21	64,298	\$	10,523.58	\$ ¢	0.164
30	Mar-21	58,941	\$	9,796.07	\$ ¢	0.166
31	Apr-21	65,050	\$	10,576.55	\$ ¢	0.163
32	May-21	56,298	\$ \$	9,438.75	\$ ¢	0.168
33	Jun-21	55,865		9,245.38	\$ ¢	0.165
34 25	Jul-21	78,227	\$	12,628.00	\$ ¢	0.161
35	Aug-21	71,066	\$	11,535.64	\$ ¢	0.162
36 Voor 2	Sep-21	60,437	\$	9,951.88	\$	0.165
Year 3	Total	761,554	\$ \$	124,326.24	ć	- 0.163
	Average	63,463		10,360.52	\$	0.163

TRUCKEE TOWN HALL - NATURAL GAS USAGE

2018 -	ANNUAL	6,287	\$	6,847.79		15%
2021	MONTHLY	524	\$	570.65	\$	10.89
Month	Date	Usage		Total Cost		Unit Cost
		(Therms)		(\$)		(\$/MMBtu)
1	Oct-18	463	\$ \$	504.45	\$	10.90
2	Nov-18	749	\$	832.25	\$	11.11
3	Dec-18	1,039	\$	1,117.05	\$	10.75
4	Jan-19	977	\$	1,066.41	\$	10.92
5	Feb-19	769	\$	806.50	\$	10.49
6	Mar-19	747	\$	772.56	\$	10.34
7	Apr-19	455	\$	488.81	\$	10.74
8	May-19	321	\$	362.66	\$	11.30
9	Jun-19	133	\$	168.03	\$	12.63
10	Jul-19	113	\$	143.36	\$	12.69
11	Aug-19	112	\$	143.89	\$	12.85
12	Sep-19	250	\$ \$ \$	280.49	\$	11.22
Year 1	Total	6,128		6,686.46		-
	Average	511	\$	557.21	\$	10.91
13	Oct-19	463	\$	504.45	\$	10.90
14	Nov-19	749	\$ \$ \$	832.25	\$	11.11
15	Dec-19	1,039	\$	1,117.05	\$ \$	10.75
16	Jan-20	977	\$	1,066.41	\$	10.92
17	Feb-20	769		806.50	\$	10.49
18	Mar-20	747	\$	772.56	\$	10.34
19	Apr-20	430	\$ \$ \$	424.13	\$	9.86
20	May-20	348	\$	347.91	\$	10.00
21	Jun-20	143	\$	158.30	\$	11.07
22	Jul-20	106	\$	121.01	\$	11.42
23	Aug-20	105	\$	119.69	\$	11.40
24	Sep-20	129	\$	149.89	\$	11.62
Year 2	Total	6,005	\$	6,420.15	Ι.	-
	Average	500	\$	535.01	\$	10.69
25	Oct-20	355	\$	361.22	\$	10.18
26	Nov-20	1,118	\$	1,141.37	\$	10.21
27	Dec-20	1,304	Ş	1,296.44	\$	9.94
28	Jan-21	1,045	\$ \$ \$ \$	1,168.87	\$	11.19
29	Feb-21	983	Ş	1,097.46	\$	11.16
30	Mar-21	749	Ş	864.86	\$	11.55
31	Apr-21	531	Ş	573.03	\$	10.79
32	May-21	209	\$	278.26	\$	13.31
33	Jun-21	115	\$ \$ \$	166.76	\$	14.50
34	Jul-21	91	Ş	139.70	\$	15.35
35	Aug-21	102	Ş	158.78	\$	15.57
36	Sep-21	127		190.01	\$	14.96
Year 3	Total	6,729	\$	7,436.76		-
	Average	561	\$	619.73	\$	11.05

NOTE: Data for Oct-18 to Mar-19 unavailable; Oct-19 to Mar-20 data used as proxy.

TRUCKEE TOWN HALL - ELECTRICITY USAGE

2018 -	ANNUAL	236,800	\$	38,227.54		85%
2021	MONTHLY	19,733	\$	3,185.63	\$	0.161
Month	Date	Usage		Total Cost	-	Unit Cost
		(kWh)		(\$)		(\$/kWh)
				(1)		(1) /
1	Oct-18	22,920	\$	3,274.45	\$	0.143
2	Nov-18	23,040	\$	3,317.34	\$	0.144
3	Dec-18	12,120	\$	2,237.60	\$	0.185
4	Jan-19	39,120	\$	5,178.13	\$	0.132
5	Feb-19	24,600		3,729.14	\$	0.152
6	Mar-19	21,480	\$ \$ \$	3,428.44	\$	0.160
7	Apr-19	18,240	\$	3,008.88	\$	0.165
8	May-19	17,640	\$	2,888.25	\$	0.164
9	Jun-19	21,720	\$	3,252.63	\$	0.150
10	Jul-19	18,840	\$	2,884.13	\$	0.153
11	Aug-19	22,560	\$	3,348.66	\$	0.148
12	Sep-19	20,280	\$ \$	3,114.67	\$	0.154
Year 1	Total	262,560	\$	39,662.32		-
	Average	21,880	\$	3,305.19	\$	0.151
		-		-		
13	Oct-19	18,120	\$	2,982.60	\$	0.165
14	Nov-19	22,800	\$	3,452.15	\$	0.151
15	Dec-19	21,240	\$ \$	3,351.18	\$	0.158
16	Jan-20	19,920	\$	3,431.24	\$	0.172
17	Feb-20	21,600	\$	3,708.69	\$	0.172
18	Mar-20	18,720	\$	3,252.81	\$	0.174
19	Apr-20	15,840	\$	2,838.22	\$	0.179
20	May-20	16,320	\$ \$ \$	2,853.04	\$	0.175
21	Jun-20	16,080	\$	2,824.97	\$	0.176
22	Jul-20	16,320	\$	2,860.98	\$	0.175
23	Aug-20	20,640	\$	3,366.07	\$	0.163
24	Sep-20	18,600	\$ \$	3,082.28	\$	0.166
Year 2	Total	226,200	\$	38,004.23		-
	Average	18,850	\$	3,167.02	\$	0.168
25	Oct-20	18,720	\$	3,025.61	\$	0.162
26	Nov-20	16,920	\$	2,952.59	\$	0.175
27	Dec-20	16,800	\$	2,929.81	\$	0.174
28	Jan-21	21,240	\$ \$	3,437.45	\$	0.162
29	Feb-21	19,560	\$	3,234.11	\$	0.165
30	Mar-21	18,480	\$	3,197.00	\$	0.173
31	Apr-21	20,760	\$	3,417.32	\$	0.165
32	May-21	16,800	\$	2,959.20	\$	0.176
33	Jun-21	May-2116,800\$2,959.20un-2116,080\$2,715.74Jul-2120,520\$3,285.86		2,715.74	\$	0.169
34	Jul-21	20,520	\$	3,285.86	\$	0.160
35	Aug-21	18,720	\$	3,039.75	\$	0.162
36	Sep-21	17,040	\$	2,821.63	\$	0.166
Year 3	Total	221,640	\$	37,016.07		-
	Average	18,470	\$	3,084.67	\$	0.167

TFPD STATION 96 - NATURAL GAS USAGE

2018 -	ANNUAL	6,788	\$	7,564.93		36%
2021	MONTHLY	566	\$	630.41	\$	11.15
Month	Date	Usage		Total Cost	-	Unit Cost
		(Therms)		(\$)		(\$/MMBtu)
				,		, ,
1	Oct-18	284	\$	279.11	\$	9.83
2	Nov-18	1,057	\$	1,025.26	\$	9.70
3	Dec-18	1,082	\$	1,194.60	\$	11.04
4	Jan-19	905	\$	974.27	\$	10.77
5	Feb-19	1,407		1,389.47	\$	9.88
6	Mar-19	922	\$	956.30	\$	10.37
7	Apr-19	483	\$	504.78	\$	10.45
8	May-19	322	\$ \$ \$ \$	354.84	\$	11.02
9	Jun-19	102	\$	131.30	\$	12.87
10	Jul-19	80	\$	103.41	\$	12.93
11	Aug-19	82	\$ \$	106.87	\$	13.03
12	Sep-19	260	\$	283.63	\$	10.91
Year 1	Total	6,986	\$	7,303.84		-
	Average	582	\$	608.65	\$	10.45
13	Oct-19	535	\$	564.97	\$	10.56
14	Nov-19	828	\$	885.99	\$	10.70
15	Dec-19	1,250	\$ \$	1,290.85	\$	10.33
16	Jan-20	1,191		1,245.97	\$	10.46
17	Feb-20	1,057	\$	2,301.74	\$	21.78
18	Mar-20	1,019	\$	991.04	\$	9.73
19	Apr-20	478	\$ \$ \$ \$	457.26	\$	9.57
20	May-20	203	\$	208.12	\$	10.25
21	Jun-20	83	\$	97.59	\$	11.76
22	Jul-20	97		109.70	\$	11.31
23	Aug-20	87	\$	99.19	\$	11.40
24	Sep-20	117	\$	134.89	\$	11.53
Year 2	Total	6,945	\$	8,387.31		-
	Average	579	\$	698.94	\$	12.08
25	Oct-20	284	\$	286.78	\$	10.10
26	Nov-20	1,112	\$	1,108.16	\$	9.97
27	Dec-20	1,221	\$	1,190.82	\$	9.75
28	Jan-21	987	\$	1,082.73	\$	10.97
29	Feb-21	996	\$ \$ \$ \$	1,083.52	\$	10.88
30	Mar-21	802	\$	918.83	\$	11.46
31	Apr-21	464	\$	504.29	\$	10.87
32	May-21	212	\$ \$ \$ \$	281.86	\$	13.30
33	Jun-21	92	\$	137.47	\$	14.94
34	Jul-21	90	\$	138.28	\$	15.36
35	Aug-21	84	\$	132.94	\$	15.83
36	Sep-21	88	\$	137.95	\$	15.68
Year 3	Total	6,432	\$	7,003.63		-
	Average	536	\$	583.64	\$	10.89

TFPD STATION 96 - ELECTRICITY USAGE

2018 -	ANNUAL	80,680	\$	13,560.78	64%
2021	MONTHLY	6,723	\$	1,130.06	\$ 0.168
Month	Date	Usage		Total Cost	Unit Cost
		(kWh)		(\$)	(\$/kWh)
1	Oct-18	5,000	\$	818.44	\$ 0.164
2	Nov-18	5,400	\$	882.16	\$ 0.163
3	Dec-18	6,000	\$	977.73	\$ 0.163
4	Jan-19	6,440	\$	1,053.21	\$ 0.164
5	Feb-19	9,360	\$ \$	1,518.37	\$ 0.162
6	Mar-19	5,640	\$	925.77	\$ 0.164
7	Apr-19	4,520	\$	747.36	\$ 0.165
8	May-19	4,640	\$	766.47	\$ 0.165
9	Jun-19	6,160	\$	1,008.61	\$ 0.164
10	Jul-19	5,560	\$	913.03	\$ 0.164
11	Aug-19	7,920	\$ \$	1,288.98	\$ 0.163
12	Sep-19	6,200		1,014.98	\$ 0.164
Year 1	Total	72,840	\$	11,915.11	-
	Average	6,070	\$	992.93	\$ 0.164
13	Oct-19	5,400	\$	887.54	\$ 0.164
14	Nov-19	6,800	\$	1,110.56	\$ 0.163
15	Dec-19	7,440	\$	1,212.51	\$ 0.163
16	Jan-20	7,040	\$	1,183.99	\$ 0.168
17	Feb-20	8,240	\$	1,381.15	\$ 0.168
18	Mar-20	6,800	\$	1,144.56	\$ 0.168
19	Apr-20	6,720	\$	1,131.42	\$ 0.168
20	May-20	6,280	\$ \$ \$	1,059.12	\$ 0.169
21	Jun-20	4,720	\$	802.82	\$ 0.170
22	Jul-20	5,760	\$	973.69	\$ 0.169
23	Aug-20	7,600	\$	1,276.00	\$ 0.168
24	Sep-20	6,520	\$ \$	1,098.56	\$ 0.168
Year 2	Total	79,320		13,261.92	-
	Average	6,610	\$	1,105.16	\$ 0.167
25	Oct-20	5,720	\$	967.12	\$ 0.169
26	Nov-20	6,760	\$	1,137.99	\$ 0.168
27	Dec-20	9,040	\$	1,512.59	\$ 0.167
28	Jan-21	10,520	\$	1,818.88	\$ 0.173
29	Feb-21	9,320	\$	1,614.52	\$ 0.173
30	Mar-21	8,040	\$	1,396.53	\$ 0.174
31	Apr-21	7,240	\$	1,260.29	\$ 0.174
32	May-21	6,040	\$ \$	1,055.93	\$ 0.175
33	Jun-21	6,120	\$	1,069.56	\$ 0.175
34	Jul-21	8,120	\$	1,410.16	\$ 0.174
35	Aug-21	6,920	\$	1,205.80	\$ 0.174
36	Sep-21	6,040	\$	1,055.93	\$ 0.175
Year 3	Total	89,880	\$	15,505.30	-
	Average	7,490	\$	1,292.11	\$ 0.173

TTAD SUMMARY* - NATURAL GAS USAGE

2018 -	ANNUAL	25,265	\$	26,153.10	27%
2021	MONTHLY	2,105	\$	2,179.42	\$ 10.35
Month	Date	Usage		Total Cost	Unit Cost
		(Therms)		(\$)	(\$/MMBtu)
1	Oct-18	1,485	\$	1,406.59	\$ 9.47
2	Nov-18	3,584	\$	3,434.45	\$ 9.58
3	Dec-18	4,055	\$	4,404.18	\$ 10.86
4	Jan-19	4,376	\$	4,528.22	\$ 10.35
5	Feb-19	6,766	\$ \$ \$	6,501.66	\$ 9.61
6	Mar-19	3,311	\$	3,375.34	\$ 10.19
7	Apr-19	1,772	\$	1,812.09	\$ 10.23
8	May-19	1,728	\$	1,828.24	\$ 10.58
9	Jun-19	603	\$	705.58	\$ 11.70
10	Jul-19	450	\$	523.06	\$ 11.62
11	Aug-19	419	\$ \$	495.29	\$ 11.82
12	Sep-19	1,161		1,231.45	\$ 10.61
Year 1	Total	29,710	\$	30,246.15	-
	Average	2,476	\$	2,520.51	\$ 10.18
13	Oct-19	1,930	\$	2,001.53	\$ 10.37
14	Nov-19	3,484	\$ \$ \$	3,596.42	\$ 10.32
15	Dec-19	3,996	\$	4,106.94	\$ 10.28
16	Jan-20	4,026		4,173.02	\$ 10.37
17	Feb-20	3,093	\$	3,060.49	\$ 9.89
18	Mar-20	3,273	\$	3,161.57	\$ 9.66
19	Apr-20	1,263	\$ \$	1,216.92	\$ 9.64
20	May-20	720	\$	724.85	\$ 10.07
21	Jun-20	562	\$	584.40	\$ 10.40
22	Jul-20	369	\$	384.13	\$ 10.41
23	Aug-20	355	\$	367.88	\$ 10.36
24	Sep-20	455	\$ \$	492.71	\$ 10.83
Year 2	Total	23,526		23 <i>,</i> 870.86	-
	Average	1,961	\$	1,989.24	\$ 10.15
25	Oct-20	966	\$	965.73	\$ 10.00
26	Nov-20	3,177	\$ \$ \$ \$	3,182.15	\$ 10.02
27	Dec-20	4,170	\$	4,024.57	\$ 9.65
28	Jan-21	3,700	\$	3,982.53	\$ 10.76
29	Feb-21	3,425	\$	3,681.19	\$ 10.75
30	Mar-21	2,877	\$	3,236.17	\$ 11.25
31	Apr-21	1,666	\$	1,772.60	\$ 10.64
32	May-21	892	\$	1,142.94	\$ 12.81
33	Jun-21	448	\$ \$ \$	604.00	\$ 13.48
34	Jul-21	347	\$	485.06	\$ 13.98
35	Aug-21	420	\$	599.23	\$ 14.27
36	Sep-21	470	\$	666.11	\$ 14.17
Year 3	Total	22,558	\$	24,342.28	-
	Average	1,880	\$	2,028.52	\$ 10.79

Prepared by Wildephor Consulting Services, LLC

*10356 Truckee Airport Road, 10266 Truckee Airport Road, and 12110 Chandelle Way.

TTAD SUMMARY* - ELECTRICITY USAGE

2018 -	ANNUAL	464,891	\$	71,985.34		73%
2021	MONTHLY	38,741	\$	5,998.78	\$	0.155
Month	Date	Usage		Total Cost		Unit Cost
		(kWh)		(\$)		(\$/kWh)
1	Oct-18	42,909	\$	6,439.74	\$	0.150
2	Nov-18	39,317	\$	5,763.51	\$	0.147
3	Dec-18	35,022	\$	5,713.45	\$	0.163
4	Jan-19	41,685	\$	6,203.38	\$	0.149
5	Feb-19	61,161	\$	8,667.17	\$	0.142
6	Mar-19	38,918	\$ \$ \$	5,809.23	\$	0.149
7	Apr-19	33,468	\$	5 <i>,</i> 098.87	\$	0.152
8	May-19	34,313	\$	5,286.94	\$	0.154
9	Jun-19	44,040	\$	6,633.85	\$	0.151
10	Jul-19	41,047	\$	6,264.88	\$	0.153
11	Aug-19	50,994	\$ \$	7,679.56	\$	0.151
12	Sep-19	42,980		6,516.90	\$	0.152
Year 1	Total	505,854	\$	76,077.48		-
	Average	42,155	\$	6,339.79	\$	0.150
13	Oct-19	35,147	\$	5,323.58	\$	0.151
14	Nov-19	42,025	\$	6,261.72	\$	0.149
15	Dec-19	37,344	\$ \$	5,619.51	\$	0.150
16	Jan-20	36,010		5,636.56	\$	0.157
17	Feb-20	38,837	\$	6,027.76	\$	0.155
18	Mar-20	36,671	\$	5,698.94	\$	0.155
19	Apr-20	27,436	\$	4,481.83	\$	0.163
20	May-20	30,985	\$ \$ \$	4,797.11	\$	0.155
21	Jun-20	31,556	\$	4,962.66	\$	0.157
22	Jul-20	35,864	\$	5,691.19	\$	0.159
23	Aug-20	45,135	\$	7,029.32	\$	0.156
24	Sep-20	41,774	\$ \$	6,543.48	\$	0.157
Year 2	Total	438,784		68,073.66		-
	Average	36,565	\$	5,672.81	\$	0.155
_	_			_		
25	Oct-20	40,086	\$	6,211.67	\$	0.155
26	Nov-20	34,829	\$	5,441.08	\$	0.156
27	Dec-20	32,251	\$	5,084.97	\$	0.158
28	Jan-21	38,486	\$	6,110.63	\$	0.159
29	Feb-21	35,418	\$	5,674.95	\$	0.160
30	Mar-21	32,421	\$	5,202.54	\$	0.160
31	Apr-21	37,050	\$	5,898.94	\$	0.159
32	May-21	33,458	Ş	5,423.62	\$	0.162
33	Jun-21	33,665	\$ \$ \$	5,460.08	\$	0.162
34	Jul-21	21 49,587 \$ 7,931.9		7,931.98	\$	0.160
35	Aug-21	45,426	\$	7,290.09	\$	0.160
36	Sep-21	37,357	\$	6,074.32	\$	0.163
Year 3	Total	450,034	\$	71,804.87	_	-
	Average	37,503	\$	5,983.74	\$	0.160

Prepared by Wildephor Consulting Services, LLC

*10356 Truckee Airport Road, 10266 Truckee Airport Road, and 12110 Chandelle Way.

ATTACHMENT 2

Partner Green Waste Summary

2020 TTSD/ERL* 30 2021 TTSD/ERL* 23	1,0844,2170,7986,1603,5304,7065,1375,027		\$ 255,526 \$ 252,287 \$ 253,907 on project.	\$41 per green ton \$54 per green ton
2020 TTSD/ERL* 30 2021 TTSD/ERL* 23 Annual Average 25	0,798 6,160 3,530 4,706 5,137 5,027 arts/dumpsters/drop-offs)	3,373 4,928 3,765 4,022 and Town vegetatio	\$ 7,942 \$ 255,526 \$ 252,287 \$ 253,907 on project.	\$41 per green ton \$54 per green ton
2020 TTSD/ERL* 30 2021 TTSD/ERL* 23 Annual Average 25	0,798 6,160 3,530 4,706 5,137 5,027 arts/dumpsters/drop-offs)	4,928 3,765 4,022 and Town vegetatio	\$ 255,526 \$ 252,287 \$ 253,907 on project.	\$41 per green ton \$54 per green ton
2021 TTSD/ERL* 23 Annual Average 25	3,530 4,706 5,137 5,027 arts/dumpsters/drop-offs)	3,765 <mark>4,022</mark> and Town vegetatio	\$ 252,287 \$ 253,907 on project.	\$54 per green ton
_	arts/dumpsters/drop-offs)	and Town vegetatio	on project.	
_				
	Green Tons	Bone Dry Tons		
Alive and District Assoc	Green Ions	Bone Dry Lons		
Airport District Acres		-	Disposal Cost	
Removal 129	2,580	2,064	-	Not projected for 10 years
Mastication* 20	320	256	-	Would require collection
Annual Projected	320	256		2%
*Assumes 16 green tons per acre	@ 20% moisture.			
Truckee Fire Acres	Green Tons	Bone Dry Tons	Disposal Cost	-
Defensible Space -	2,000	1,600		New curbside pick-up program
Fuels Reduction* 500	8,000	6,400	-	Projected based on Measure T
Annual Projected	10,000	8,000		65%
*Assumes 16 green tons per acre	@ 20% moisture.			1
PARTNER TOTAL		12,278	BDT/Year	100%
Heat outpu	t @ 70% boiler efficiency	144,388	MMBtu/Year	
-	put @ 5% ORC efficiency	2,116,012	kWh/Year	

ATTACHMENT 3

Operating Expense Summary

ſ	OPERATING EXPENSE SUMMA	RY			Disposal				Biomas	s P	Power			Biomass Heat		
			A-1		A-2 A-3		A-3	B-1			B-2	C-1		C-2	C-3	
			TTSD Landfill	Air (Curtain Burner		ACB + Biochar		ACB + Generator		Gasifier + Biochar		District Heating	Heat + Power	H	leat + Biochar
ſ																
1	Disposal Cost	\$/yr	\$ 1,200,000	\$	-	\$	-	\$	-	\$	610,000	\$	820,000	\$ 750,000	\$	320,000
2	Heat Revenue	\$/yr	\$ -	\$	-	\$	-	\$	-	\$	\$ (40,000)	\$	(40,000)	\$ (40,000)	\$	(40,000)
3	Electricity Revenue	\$/yr	\$ -	\$	-	\$	-	\$	(40,000)	\$	\$ (760,000)	\$	-	\$ (110,000)	\$	(120,000)
4	Biochar Revenue	\$/yr	\$ -	\$	-	\$	(240,000)	\$	-	\$	\$ (200,000)	\$	-	\$ -	\$	(890,000)
5	System O&M Cost	\$/yr	\$ -	\$	220,000	\$	180,000	\$	240,000	\$	\$ 410,000	\$	170,000	\$ 160,000	\$	560,000
	Net Annual Operating Cost	\$/yr	\$ 1,200,000	\$	220,000	\$	(60,000)	\$	210,000	\$	\$ 20,000	\$	950,000	\$ 760,000		(\$160,000)

Prepared by Wildephor Consulting Services, LLC

NOTE: All values rounded to nearest \$10k; discrepancies in annual totals due to rounding.

ATTACHMENT 4

Available GHG Emissions Reductions

AVAILABLE GHG EMISSIONS REDUCTIONS

Source	Value	Units	Annual	%	25 Years
			(MT CO2e)		(MT CO2e)
Natural Gas Offsets	3,834	MMBtu	203	30%	5,087
Electricity Offsets	782,371	kWh	122	18%	3,043
Avoided Decomposition	20	Acres	363	53%	9,072
PARTNER TOTAL			688	100%	17,202
			150	Cars*	3,740

*Typical passenger vehicle emits roughly 4.6 metric tons of CO2 annually (U.S. EPA, 2021).

	Source	Value	Units	Annual	% Up	25 Years
				(MT CO2e)*		(MT CO2e)
A-3	Biochar Production	600	tons/yr	1,633	237	40,824
B-2	Biochar Production	493	tons/yr	1,342	195	33,543
C-3	Biochar Production	2,216	tons/yr	6,031	877	150,776

*Assumes 3 metric tons of CO2 sequestration per metric ton of biochar produced (T. R. Miles, 2021).

Candidate Totals	ID	Biochar	Annual	Cars	25 Years
		(Y/N)	(MT CO2e)	(Annual)	(MT CO2e)
TTSD Landfill (Baseline)	A-1	N	0	0	0
Disposal	A-2	N	363	79	9,072
Disposal with Biochar	A-3	Y	1,996	434	49,896
Biomass Power	B-1	N	485	105	12,115
Biomass Power with Biochar	B-2	Y	2,030	441	50,745
Biomass Heat	C-1	N	566	123	14,159
Combined Heat and Power	C-2	N	688	150	17,202
Combined Heat and Biochar	C-3	Y	6,719	1,461	167,977

ATTACHMENT 5

Candidate Solution Scorecards

TRUCKEE BIOMASS UTILIZATION	CANDIDATE SOLUT	IONS						
SUMMARY SCORECARD		A. Disposal		B. Bioma	iss Power		C. Biomass Heat	
6/8/2022	1. TTSD Landfill	2. Air Curtain	3. AC Burner	1. AC Burner	2. Gasifier	1. Hydronic	2. Combined	3. Combined
	(Baseline)	Burner	with Biochar	with Generator	with Generator	, District Heating	Heat and Power	Heat and Biochar
EVALUATION CRITERIA		DROP	DROP	DROP	KEEP	DROP	DROP	KEEP
Technical Factors								
1 Commercial Availability								
(Maximize)	High	High	High	High	Moderate	High	High	Moderate
2 Operational Efficiency/Flexibility (Maximize)	Moderate	High	High	Low	Moderate	High	High	High
3 Size/Footprint (Minimize)	> 10,000 SF	> 10,000 SF	> 10,000 SF	> 10,000 SF	1,000 - 10,000 SF	1,000 - 10,000 SF	1,000 - 10,000 SF	1,000 - 10,000 SF
4 Scalability (Maximize)	Moderate	High	High	High	Low	Moderate	Moderate	High
5 Operational Structure (Nominal)	Other Parties	TOT & Project Partners	TOT & Project Partners	TOT/Partners & TDPUD	TOT/Partners & TDPUD	TOT & Project Partners	TOT/Partners & TDPUD	TOT & Project Partners
6 Schedule/Timing (Minimize)	2022	2022	2022	2023	2024	2023	2023	2024
Economic Factors					•			
7 Life Cycle Capital Cost (Minimize)	\$0	\$300,000	\$750,000	\$2,000,000	\$15,000,000	\$5,000,000	\$6,000,000	\$7,000,000
8 Net Annual Operating Cost (Minimize)	\$1,200,000	\$220,000	(\$60,000)	\$210,000	\$20,000	\$950,000	\$760,000	(\$160,000)
9 TDPUD Ratepayer Impacts (Minimize)	None	None	None	Marginal	Substantial	None	Marginal	Marginal
Environmental Factors								
10 Green Waste Reuse (Maximize)	< 50%	< 50%	< 50%	> 100%	50 - 100%	< 50%	< 50%	50 - 100%
11 Life Cycle GHG Reductions (Maximize)	< 50k MT CO2e	< 50k MT CO2e	< 50k MT CO2e	< 50k MT CO2e	50k - 100k MT CO2e	< 50k MT CO2e	< 50k MT CO2e	> 100k MT CO2e
12 Community Impacts (Minimize)	Moderate	Low	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
Social Factors								
13 District Heating/Snow Melt (Nominal)	No	No	No	No	Yes	Yes	Yes	Yes
14 Renewable Power Generation (Nominal)	No	No	No	Yes	Yes	No	Yes	Yes
15 Biochar Production (Nominal)	No	No	Yes	No	Yes	No	No	Yes

TRUCKEE BIOMASS UTIL CANDIDATE SOLUTION S					
ID A-1	Туре	Offsite Disposal - TTSD Landfill (Baseline)	Date	6/8/2022	
Supplier/Provider	Tahoe Truckee Sierr Landfill (ERL) - <u>www</u>	a Disposal (TTSD) Eastern Regional	Location	Truckee, CA	
Description	Collecting green was	ste produced by defensible space and fue inicipal sources and hauling in bulk for di			
		\$6.35/CY in 2018 to \$15.00/CY in 2022 (-	
CRITERIA	FACTOR	EVALUATIO	N		
1. Commercial Technical avai		Local disposal of green waste is expect available at ERL; however, downstrear (e.g., large-scale bioenergy plants) are	n uses for th uncertain.	e material	High
2. Operational Efficiency/Flexibility	iciency/Flexibility		Moderate		
3. Size/Footprint	Technical	Area required to store projected green waste quantities from partner organizations could exceed 10,000 SF <u>per month</u> of storage at ERL.			> 10,000 SF
4. Scalability	Technical	Local disposal of green waste is expect available at ERL; however, capacity iss future as a result of Measure T waste	ues could ari	Moderate	
5. Operational Structure	e Technical	Disposal of green waste at ERL is subje requirements and tipping fees as set b	te at ERL is subject to material handling ing fees as set by TTSD.		
6. Schedule/Timing	Technical	Disposal of green waste at ERL is curre	posal of green waste at ERL is currently available.		
7. Life Cycle Capital Cos	t Economic	Additional heavy equipment purchase effectively implement expanded biom Measure T fuels reduction goals (not in	ass removal		\$0
8. Net Annual Operating Cost	Economic	Town anticipates paying at least \$15/c ERL going forward. At that rate, dispos waste quantities (~12,000 BDT/yr) wo	sing of project	cted future	\$1,200,000
9. TDPUD Ratepayer Impacts	Economic	Disposal of green waste at ERL does no electricity rates paid by Truckee Donne		-	None
10. Green Waste Reuse	Environmental	Disposal of green waste at ERL would directly reuse material projected from and/or other biomass removal program	green waste	-	< 50%
11. Life Cycle GHG Reductions	Environmental	Disposal of green waste at ERL does no directly control reduction of their carb			< 50k MT CO2e
12. Community Impacts	Environmental	Disposal of green waste at ERL is proje 800 trucking round trips annually in th			Moderate
13. District Heating/ Snow Melt	Social	Disposal of green waste at ERL does no directly offset any of their current nate			No
14. Renewable Power Generation	Social	Disposal of green waste at ERL does no directly offset any of their current elec			No
15. Biochar Production	Social	Disposal of green waste at ERL does no produce biochar as a potentially merch biomass removal.			No

	DMASS UTILIZ SOLUTION SC							
ID	A-2	Туре	Onsite Disposal - Air Curtain Burner	Date	6/8/2022			
Supplier/Pro	ovider	Air Burners, Inc.		Location	Palm City, FL			
Description		FireBox air curtain b device for an alterna	reBox air curtain burner combusts unprocessed biomass waste onsite. Designed as a pollution control evice for an alternative to open pile burning, reducing particulate matter and black carbon emissions. <i>Yould allow onsite disposal with some improved environmental impact but at high operating costs.</i>					
CRI	ΓERIA	FACTOR	EVALUATIO	-	. but ut nigh op	DROP		
1. Commerci Availability		Technical	Technology in use since 1990. Demons starting in 2001. Smaller versions own Similar units currently permitted and u	strated in the ed and opera	ated by USFS.	High		
2. Operation Efficiency/Fl		Technical	Clean, efficient combustion that effect particulates. Can manage wide variety density of feedstocks, including whole	in moisture,		High		
3. Size/Footprint Technical			100 Series: 2-5 t/hr; skid-mounted witl 200/300 Series: 5-13 t/hr; skid mounte 70,000 SF working circle required for s	ed; 30-40' ler afety.	igth.	> 10,000 SF		
4. Scalability	loads and be moved to different locations (no concrete pad).			High				
5. Operation	al Structure	Technical	utility for wood handling and fire contr TFPD or other municipal staff.	•				
6. Schedule/	Delivery in ~6 months. Rapid commissioning. Air quality Dedule/Timing Technical permitting required as alternative to open pile burning; currently difficult based on discussions with regulators.		2022					
7. Life Cycle	Capital Cost	Economic	Equipment - \$125-200k; Commissioning - \$20k; Freight and indirect costs - \$40k.			\$300,000		
8. Net Annua Cost	al Operating	Economic	Roughly 80% less than projected annual cost for disposal at ERL. Assumes two operators working 8 hr/day, accounting for ~90% of total annual cost.			\$220,000		
9. TDPUD Ra Impacts	itepayer	Economic	Disposal of green waste using air curta directly impact the electricity rates pai customers.			None		
10. Green W	aste Reuse	Environmental	Disposal of green waste using air curta the partners to directly reuse material waste recycling and/or other biomass	projected fr	om green	< 50%		
11. Life Cycle Reductions	e GHG	Environmental	GHG emissions reduction available fro decomposition of green waste that is o			< 50k MT CO2e		
12. Commur	ity Impacts	Environmental	Onsite/mobile air curtain burner could trucking round trips annually in the Tru to ERL.	uckee area ve	ersus hauling	Low		
13. District H Snow Melt	leating/	Social	Disposal of green waste using air curta the partners to offset any of their curr			No		
14. Renewal Generation	ble Power	Social	Disposal of green waste using air curta the partners to offset any of their curr			No		
15. Biochar I	Production	Social	Disposal of green waste using air curtain burner is not designed to produce biochar; however, some usable biochar could be produced with additional 2 hr/day of manual operations.			No		

CANDIDATE SO		ORECARD					
ID A-	-3	Туре	Onsite Disposal - Date 6/8/2022				
			Air Curtain Burner with Biochar				
Supplier/Provid	der	Tigercat Internation	al Inc.	Location	Ontario, Canada		
		www.tigercat.com					
Description		6050 Carbonator me	obile air curtain burner with biochar reco	overy by Tige	rcat (formerly R	OI Equipment).	
		Combustion unit mo	ounted on tracks with grate and augers to	remove bio	char after quen	ching. <i>Leasing</i>	
		could be a low-cost	option to test producing biochar as a co	benefit of	green waste dis	posal.	
CRITER	RIA	FACTOR	EVALUATIO	N		DROP	
			Distributed by major mobile equipmer	nt suppliers,	with nearest		
1. Commercial		Technical	location in Reno, NV. Machines operat	ing in 40+ co	ountries. May	High	
Availability			be available to lease for monthly/seas	onal use.	-		
			Mobile operation can handle wide var		ure size and		
2. Operational		Technical	density of feedstocks, including whole			High	
Efficiency/Flexibility			winter on burn days.	logs. cull op		ingn	
			· · · · · · · · · · · · · · · · · · ·	ckc, 16"	und closerses		
2 Cine / Franks		Technical	40' x 12' x 12' air curtain burner on tra	-		. 40.000.07	
3. Size/Footprin	nt	Technical	for mobile operations on uneven terra	in. Required	operating	> 10,000 SF	
			radius of ~200-300'.				
			80-160 t/day throughput (10-20 t/hr).		•		
4. Scalability		Technical	12,000 BDT (@ 8 hr/day). Additional u	nits could be	e purchased or	High	
			leased if needed.				
			Two operators required including exca	vator for loa	iding waste.		
5. Operational Structure		Technical Units can be purchased, leased, or contracted			ed. Would require		
			water tanker from TFPD or elsewhere.		-	Partners	
			Rental units available; purchases delive	ered in 3-6 m	nonths. Air		
6. Schedule/Tin	ning	Technical	quality permitting required as alternat			2022	
			currently difficult based on discussions		-	2022	
		-		with regula	<u>tors</u> .		
	nital Cast	Foonomia	Base price ~\$650k. Lease @ \$30k/mor	th could be	good option to	6750.000	
7. Life Cycle Ca	pital Cost	Economic	test before annual green waste quanti	ty ramps up.		\$750,000	
8. Net Annual C	Operating		OPEX could be more than offset by biochar sales. 4,800 CY of				
Cost		Economic	biochar could generate ~\$240k in annual revenue. Simple			(\$60,000)	
			payback = 13 years.				
9. TDPUD Rate	naver		Disposal of green waste using air curtain burner would not				
Impacts	payer	Economic	directly impact the electricity rates pai	directly impact the electricity rates paid by Truckee Donner PUD			
impacts			customers.				
			Disposal of green waste using this air o	urtain burne	er would allow		
10. Green Wast	te Reuse	Environmental	the partners to reuse ~5% of material	projected fro	om green	< 50%	
			waste recycling and/or other biomass		-		
			GHG emissions reduction available fro	-	-		
11. Life Cycle G	HG	Environmental	decomposition of green waste that is o			< 50k MT CO20	
Reductions			Additional 1,600 MT CO2e/yr sequeste			000000000000000000000000000000000000000	
			Onsite/mobile air curtain burner could				
12 Community	Impacto	Environmentel	-			Moderate	
12. Community	impacts	Environmental	trucking round trips annually in the Trucking ro		ersus nauling	Moderate	
			to ERL. <u>Requires quench water @ up to</u>				
13. District Hea	ting/		Disposal of green waste using air curta				
Snow Melt	0,	Social	the partners to offset any of their curr	No			
14. Renewable	Dower		Disposal of green waste using air curta	in burner wo	ould not allow		
	rower	Social	the partners to offset any of their curr	ent electricit	y usage.	No	
Generation					NU		
15. Biochar Pro	duction	Social	Estimated revenue from biochar sales:	~4,800 CY @	⊉ \$50/CY =	Yes	
			~\$240k annually.				

TRUCKEE BIO CANDIDATE S						
ID	B-1	Туре	Biomass Power -	Date	6/8/2022	
			Air Curtain Burner with Generator			
Supplier/Prov	vider	Air Burners, Inc.		Location	Palm City, FL	
		www.airburners.com	<u>n</u>			
Description			s an air curtain burner with an organic Ra	nkine cvcle	(ORC) generator	provided by
			duce up to 250 kWe of emissions-free po			
			ower purchases along with avoided land			
CRIT	FRIA	FACTOR	EVALUATIO			DROP
СКП		TACTOR	Air curtain burner technology in use si		rtnered with	DIGI
1. Commercia	al	Technical	ElectraTherm for power generation m			High
Availability		recificat	connected units now operating at land			i ligit
2. Operationa	al	Taskalast	Clean burning operation up to 8 hr/da		-	
Efficiency/Fle	exibility	Technical	combustion efficiency; very low electr			Low
-			process (<5%) but good for maximizing			
			Comparable to 200 Series FireBox with			
3. Size/Footprint		Technical	power module installed on slab with g	rid connectio	on. 70,000 SF	> 10,000 SF
			working circle required for safety.			
			50-70 t/day throughput; 12,000 BDT/y	r could be p	rocessed using	
4. Scalability		Technical	a single unit (@ 8 hr/day). System can	be disassem	bled and	High
			relocated. 150 kWe maximum size cur	ble.		
			Two operators required: loader/excav	ator to feed	burner and	TOT/Partners &
5. Operational Structure		Technical		utility for wood handling and fire control. Would require net		
			metering or power purchase agreement with TDPUD.			
			Delivery in ~6 months. Additional engineering required for grid			
6. Schedule/Timing Technical		Technical	connection. Air quality permitting requ		-	2023
		reennear	pile burning. Up to 6 months for grid in		-	2025
				iterconnecti	011.	
7 Life Cycle (Conital Cost	Faanamia	Equipment - \$6,400-9,000/kW; plus installation on slab and			¢2,000,000
7. Life Cycle C	Lapital Cost	Economic	electrical connections.			\$2,000,000
				<u> </u>		
8. Net Annua	l Operating		Electricity sales offset only about 15% of annual O&M costs.			
Cost		Economic	Payback not possible even at 1 MWe scale (currently under			\$210,000
			development) without additional subsidies.			
9. TDPUD Rat	tenaver		250 kWe generating capacity could pro	oduce ~375 I	MWh/yr.	
Impacts	cepuyer	Economic				Marginal
impacts						
			Disposal of green waste using PGFireB	ox would all	ow the	
10. Green Wa	aste Reuse	Environmental	partners to reuse 1.3x material project	ted from gre	en waste	> 100%
			recycling and other biomass removal p	orograms.		
			GHG emissions reductions available fro	om avoided a	anaerobic	
11. Life Cycle	GHG	Environmental	decomposition of green waste that is o	currently ma	sticated and	< 50k MT CO2e
Reductions			avoided electricity purchases from TDI			
			Onsite air curtain burner could elimina		of trucking	
12. Communi	ity Impacts	Environmental			-	Moderate
			round trips annually in the Truckee area versus hauling to ERL. Requires 725 gpm of cooling water.			moderate
			Disposal of green waste using air curta	in hurner w		
13. District H	eating/	Social				No
Snow Melt		Social	the partners to offset any of their current natural gas usage.			No
				11.00		
14. Renewab	le Power		Installation of a 250 kWe PGFireBox co			
Generation		Social	electricity currently consumed by the five buildings examined for			Yes
				the scoping study.		
			Disposal of green waste using air curta		-	
15. Biochar P	roduction	Social	to produce biochar; however, some us			No
		1	produced with additional 2 hr/day of r	nanual onor	ations	

TRUCKEE BIO CANDIDATE S							
ID	B-2	Туре	Biomass Power -	Date	6/8/2022		
			Gasifier with Generator				
Supplier/Prov	/ider	SynCraft Engineering	g GmbH	Location	Innsbruck, Au	ustria	
		www.syncraft.at/en					
Description		CW1800x2-1000 floa	ating fixed-bed gasifier with 1 MWe nom	inal output.	Wood chips the	rmochemically	
		converted into synth	esis gas for combustion in an engine ger	erator, with	biochar as co-p	roduct. <i>Offers</i>	
		somewhat low utiliz	ation (~50%) of projected green waste	volumes at i	relatively high c	apital cost.	
CRITI	ERIA	FACTOR	EVALUATIO	N		KEEP	
1. Commercia Availability	ıl	Technical	Several operating systems in Austria and bed technology has demonstrated reli- in US without strong partner and good	ability. Supp	-	Moderate	
2. Operational Technical product. Good turn		Efficient power conversion with ~10% product. Good turndown and load resp at > 80% full load. <u>Requires well-forme</u>	oonse. Best t	to run engine	Moderate		
3. Size/Footp	Size/FootprintTechnical50' x 120' footprint; ~8,000 SF total for multi-story building with fuel storage and drying (1 week supply).			1,000 - 10,000 SF			
4. Scalability		Technical		r fuel feed rate. ~6,000 BDT/yr of green nposed of two 500 kWe modular units.			
5. Operationa	l Structure	Technical		ed to operate 24/7 with daily oversight by E). Best to have an operator experienced Id require a PPA with TDPUD.			
6. Schedule/T	iming	Technical	Long delivery lead time. International supplier will require establishing US distributor to oversee design and installation. Up to 6 months for grid interconnection.			2024	
7. Life Cycle C	Capital Cost	Economic	Small-scale gasifiers driving internal co expensive on a per unit of output basis equipment costs).		-	\$15,000,000	
8. Net Annua Cost	l Operating	Economic	Engines require frequent maintenance 10,000 operating hours. Payback chall 1 MWe scale (assuming PPA rate of \$0	enging witho	-	\$20,000	
9. TDPUD Rat Impacts	epayer	Economic	1 MWe generating capacity could proc Terms of PPA could set precedent for service area.		-	Substantial	
10. Green Wa	iste Reuse	Environmental	Disposal of green waste using gasifier s partners to reuse roughly 50% of mate waste recycling and/or other biomass	rial projecte	d from green	50 - 100%	
11. Life Cycle Reductions	GHG	Environmental	GHG emissions reductions available fro decomposition and avoided electricity Additional ~1,300 MT CO2e/yr seques	purchases f	rom TDPUD.	50k - 100k MT CO2e	
12. Communi	ty Impacts	Environmental	Additional processing of wood waste (could create noise and some dust in ex required for disposal using air curtain l	cess of what		Moderate	
13. District Ho Snow Melt	eating/	Social	Disposal of green waste in this type of could allow the partners to offset their through heat recovery.	-	-	Yes	
14. Renewabl Generation	le Power	Social	1 MWe gasifier could generate nearly currently consumed by the five buildin scoping study.		-	Yes	
15. Biochar P	roduction	Social	Estimated revenue from biochar sales: ~\$200k annually.	~3,900 CY @	@ \$50/CY =	Yes	

TRUCKEE BIOM							
ID C-:	1	Туре	Biomass Heat - Hydronic District Heating	Date	6/8/2022		
Supplier/Provid	er	Messersmith Manuf	facturing Inc.	Location	Bark River, M	11	
Description		Advanced wood-fire	 ed boiler system used to generate hot wa ned heat & power (CHP) systems availabi			-	
			economics limited by relatively low con		-		
CRITER	IA	FACTOR	EVALUATIO	N		DROP	
1. Commercial Availability		Technical	Domestic supplier of automated biom than 35 years. Strong reputation for pr term reliability.	oject delive	ry and long-	High	
2. Operational Technical		Technical	Able to burn green fuel with up to 50% including whole tree chips. Boiler turn high combustion efficiency that can ex	down ratio ι		High	
3. Size/Footprint Technical		Technical	50' x 100' footprint = 5,000 SF total for fuel storage at or below grade (1-2 we		v building with	1,000 - 10,000 SF	
4. Scalability	Scalability Systems ranging from 1-60 MMBtu/hr heat output (analysis used 7 MMBtu/hr). Multiple boilers can be installed in phases to allow for future expansion and/or operational flexibility.		Moderate				
5. Operational S	Structure	Technical	Boiler plant could be highly automated possible with daily system checks by e District heating may require heat purc	xisting muni	TOT & Project Partners		
6. Schedule/Tim	ning	Technical	4-6 months for delivery of boiler equip completion of detailed design package subject to ongoing supply chain constr	ailed design package and down payment,		2023	
7. Life Cycle Cap	oital Cost	Economic	Equipment - \$2.5MM (installed); plus site work and central boiler Economic plant building, balance of plant, district piping, building interconnections, and professional services.		\$5,000,000		
8. Net Annual O Cost	perating	Economic	Relatively low avoided costs for existir to offset plant operating costs. Capital recovered through heating alone at th	investment is scale.	could not be	\$950,000	
9. TDPUD Ratep Impacts	ayer	Economic	Operation of a biomass-fueled district directly impact the electricity rates pair customers.			None	
10. Green Wast	e Reuse	Environmental	Operation of a biomass-fueled district allow the partners to reuse ~30% of m green waste recycling and/or other bio	aterial proje	cted from	< 50%	
11. Life Cycle GH Reductions	HG	Environmental	GHG emissions reductions available fro decomposition of green waste that is o avoided natural gas purchases from So	currently ma	sticated and	< 50k MT CO2e	
12. Community	Impacts	Environmental	Additional processing of wood waste (could create noise and some dust in ex required for disposal using air curtain	cess of wha		Moderate	
13. District Heat Snow Melt	ting/	Social	7 MMBtu/hr boiler system would allov 100% of current natural gas usage. <u>Sig</u> could be available for hydronic snow r	nificant boile		Yes	
14. Renewable I Generation	Power	Social	Operation of a biomass-fueled district CHP would not allow the partners to o electricity usage.			No	
15. Biochar Proc	duction	Social	Disposal of green waste in a biomass b biochar as a potentially merchantable removal, but could produce usable ash	co-product of biomass No		No	

CANDIDATE ID	SOLUTION SC	ORECARD Type	Biomass Heat -	Date	6/8/2022			
	C-2	туре	Combined Heat and Power (CHP)	Date	0/0/2022			
Supplier/Pr	ovider	ElectraTherm, Inc.		Location	Flowery Bran	ch, GA		
Description		Using heat from a 7 connected POWER+	Jsing heat from a 7 MMBtu/hr <u>Messersmith</u> biomass-fired boiler to generate electricity with a grid- onnected POWER+ organic Rankine cycle (ORC) generator. <i>CHP system allows offsets of utility heat an</i> <i>electricity purchases to improve environmental impacts, but still cost prohibitive at this scale.</i>					
CRI	TERIA	FACTOR	EVALUATIO			DROP		
1. Commerc Availability	ial	Technical	More than 100 ORC generators operat units powered by waste heat from bio Domestic manufacturer, with support	mass-fired b	oilers.	High		
2. Operational Technical		Technical	Demonstrated availability factor of ~9 available. Minimum operating output system having extremely low mainten	of 25 kWe. C	losed loop	High		
13 Nize/Footprint Lechnical		Technical	50' x 120' footprint including liquid loc biomass boiler building.	op radiator (I	LR) and	1,000 - 10,000 SF		
4. Scalabilit	. Scalability Technical 125-150 kWe gross power output. 75 kWe units also available. LLR allows shedding of waste heat to atmosphere in response to fluctuating heat demand.		Moderate					
5. Operation	nal Structure	Technical		onal operators required beyond those required for oiler plant. Would require net metering agreement JD.		TOT/Partners & TDPUD		
6. Schedule,	/Timing	Technical	Turnkey system with relatively simple	elivery of boiler plant would control lead time for CHP project. Irnkey system with relatively simple connection to biomass Iler. Up to 6 months for grid interconnection.		2023		
			ORC Equipment - \$300k; plus grid connection (in additional to estimated \$5MM CAPEX for boiler plant).					
8. Net Annu Cost	al Operating	Economic	Savings from avoided natural gas purc insufficient to offset annual boiler syst not achievable at this scale (snow melt	em O&M co	sts. Payback	\$760,000		
9. TDPUD R Impacts	atepayer	Economic	150 kWe generating capacity could pro	oduce ~1,10	0 MWh/yr.	Marginal		
10. Green V	Vaste Reuse	Environmental	Operation of a biomass-fueled CHP sys partners to reuse ~35% of material pro recycling and/or other biomass remov	jected from	green waste	< 50%		
11. Life Cycl Reductions	Cycle GHG Environmental Environmental GHG emissions reductions available from avoided anaerobic decomposition of green waste that is currently masticated and avoided natural gas and electric utility purchases.		sticated and	< 50k MT CO2e				
12. Commu	nity Impacts	Environmental	Closed loop ORC system produces no o emissions. 72 dBA operating noise leve impacts would be from biomass boiler	el at 1 meter plant.	. Primary	Moderate		
13. District Snow Melt	Heating/	Social	7 MMBtu/hr boiler system would allow 100% of current natural gas usage. Add could be used to supply hydronic snow	ditional boile	er capacity	Yes		
14. Renewa Generation	ble Power	Social	150 kWe ORC generator could offset 1 consumed by the five buildings examined by the five buil			Yes		
15. Biochar	Production	Social	Disposal of green waste in a biomass boiler would not produce biochar as a potentially merchantable co-product of biomass removal, but could produce usable ash.			No		

CANDIDATE	SOLUTION SC	ORECARD					
ID	C-3	Туре	Biomass Heat -	Date	6/8/2022		
			Combined Heat and Biochar (CHAB)				
Supplier/Pro	ovider	Pyrocal Proprietary I		Location	Queensland,	Australia	
		www.pyrocal.com.a					
Description			utilizing an advanced thermal treatment				
			ology (CCT) to convert biomass into the			-	
			nital cost recovery is highly dependent o	-	om biochar sal	es.	
CRI	TERIA	FACTOR	EVALUATIO	N		KEEP	
1. Commercial			Proven technology implemented on a				
Availability		Technical	Australia since 2014, now with more the		ations in eight	Moderate	
,			countries. Currently no projects in the				
2. Operational			High overall conversion efficiency to h		-		
Efficiency/Flexibility		Technical	operating hours for biochar production			High	
			economical. Includes emissions contro	l equipment.			
			Pyrocal CCT 12 - 2.8 MMBtu/hr boiler		-		
3. Size/Foot	print	Technical	Containerized reactor and heat recove			1,000 - 10,000 SF	
			per gasifier. 75' x 120' footprint = 9,00				
			Modular system allowing multiple unit				
4. Scalability	y	Technical	turndown ratio and flexibility to adapt	to changes in	n feedstock	High	
			sizing and composition.				
			Highest operating costs of all candidat		-	TOT & Project	
5. Operational Structure		Technical	volumes of biochar production. Adding	Partners			
			require PPA or net metering agreemer	nt with TDPU	<u>D.</u>		
			Fabricated and shipped from Australia	System of th	his scale may		
6. Schedule	/Timing	Technical	require longer than normal lead time.	. System of th	is scale may	2024	
			Equipment - \$4MM; plus site work, dis				
7. Life Cycle	Capital Cost	Economic	interconnections, and professional services; includes 150 kWe			\$7,000,000	
			ORC unit for generating electricity from excess heat.				
8. Net Annu	al Operating		Assumes processing ~8,800 BDT/yr for heating and electricity				
Cost		Economic	offsets and biochar sales. Payback highly sensitive to biochar			(\$160,000)	
				revenue.			
9. TDPUD R	atepaver		150 kWe generating capacity would pr				
Impacts		Economic				Marginal	
•							
			Operation of a biomass-fueled CHAB s				
10. Green V	Vaste Reuse	Environmental	partners to reuse ~75% of material pro	•	green waste	50 - 100%	
			recycling and/or other biomass remov				
11. Life Cycl	e GHG		GHG emissions reductions available fro				
Reductions		Environmental	decomposition and avoided gas and el			> 100k MT CO2e	
			Additional 6,000 MT CO2e/yr sequeste				
12 Carrier		Environmental	No additional impacts would be produ				
	nity Impacts	Environmental	system relative to standard biomass be	•	lochar would	Moderate	
12. commu			require removal by truck (up to 200 lo				
12. comina			11 MMBtu/hr boiler system would allo				
13. District	Heating/	Cosici		ditional haile	r canacity		
13. District	Heating/	Social	100% of current natural gas usage. Ad			Yes	
13. District	Heating/	Social	100% of current natural gas usage. Ad could be used to supply hydronic snow	v melt system	1.	Yes	
			100% of current natural gas usage. Ad could be used to supply hydronic snow 150 kWe ORC generator could offset 1	v melt system .00% of elect	n. ricity currently		
13. District Snow Melt 14. Renewa		Social Social	100% of current natural gas usage. Ad could be used to supply hydronic snow	v melt system .00% of elect	n. ricity currently	Yes	
13. District Snow Melt			100% of current natural gas usage. Ad could be used to supply hydronic snow 150 kWe ORC generator could offset 1	v melt system .00% of elect	n. ricity currently		
13. District Snow Melt 14. Renewa	ble Power		100% of current natural gas usage. Ad could be used to supply hydronic snow 150 kWe ORC generator could offset 1	v melt system 00% of elect ned for the sc	n. ricity currently coping study.		