

Truckee Tahoe Airport

Airport Master Plan Update

April 20, 2022

Tonight's Agenda

- Introductions
 - Kevin Smith, Airport General Manager
- Administration
 - Katie Franco, Aviatrix Communications
- Airport Master Plan Update
 - Brad Musinski, Mead & Hunt
- Breakout Rooms
 - Flight Procedures: Hardy Bullock (TRK), Alec Seybold (Flight Tech)
 - Third Runway: Kevin Smith (TRK), Brad Musinski (Mead & Hunt)
- No formal conclusion this evening

Master Plan Overview

How did we get here today?

- Since 2015 the Third Runway concept has continued to be a subject of public interest
- 2013 2015: Airport Master Plan
 - Third runway was briefly reviewed but not pursued due to cost and likely ineligibility for federal funding
 - RW 2/20 lengthening and widening became preferred alternative
- 2019 2020: Third Runway Preliminary Analysis
 - Evaluated FAA eligibility potential for Third Runway
 - Described steps to bring this to the FAA, funding, and environmental review
- In 2021 the Board decided to pursue a full Feasibility Study to fully vet the concept

Why does evaluating the Third Runway matter?

- Potential benefits to the community and operators
- Due diligence

Potential benefits to the community

- Reduce residential overflight
- Reduce noise impacts
- Enhance safety

Potential benefits to pilots/aircraft

- Improve operational efficiency
- Enhanced arrival and departure procedures
 - Vertically guided approach (LPV)
 - Improve climb gradient (departures)
- GOAL: A Third Runway should <u>not</u> facilitate growth in operations at TRK

Airport Master Plan Update

- Phase 1: Alternative Runway Feasibility Study
- Evaluate conceptual Third Runway
- Present alternatives and benefits to the community
- <u>If</u> the Third Runway is determined to meet goals and be feasible, <u>then</u>:
- Update Airport Layout Plan with Third Runway
- Seeking FAA input and potential acceptance
- Does not guarantee construction
 - Funding
 - Environmental

Third Runway Concept

- Refined from other preliminary concepts
- Optimized for the best flight path alignment
- 5,900 feet total runway length
 - Maximizes runway length on property
 - Compliant safety area and taxiway geometry
- Runway 16/34 designation

Flight Procedures for Third Runway Concept

RW 16 LPV Approach

- CAT A/B/C Missed Approach Obstacle Clearance Surfaces
- Utilizes higher than standard Decision Altitude (D.A.)
- Requires speed limitation
- 2 minutes and 40 seconds to high terrain (@ 90 knots)

Missed Approach

- RW 16 missed approach path
- Looking northwest

Missed Approach

- RW 16 missed approach path
- Looking southeast

Departure Routing

- Yellow line indicates estimated path of aircraft
- Climbing at a minimum of 344 ft/nm.

Departure Procedure

- Satellite overlay of RW 34 Departure
- Looking northwest

N

TRK Area Airspace

- Overview of TRK area airspace with waypoints
- Enroute transitions depicted

Runway 16/34 Use Estimates

Runway 16/34 Utilization

- Utilization estimates to be used for noise/overflight analysis
- Pilot outreach to help determine utilization
 - Interviewed local pilots, charter operators, itinerant users
 - Three local pilots totaling 15% of operations
 - Six charter operators (itinerant users) totaling 8% of operations
 - Mix of piston, turboprop and jet operators
- Qualitative and quantitative
- Analyzed wind, weather, and visibility data

Pilot and Operator Interviews – Key Findings

- TRK is located in complex airspace
- Many factors go into runway use for arrivals and departures
 - Wind speed and direction
 - Terrain
 - Visibility
 - Wet/icy runway conditions (contaminated runways)
 - Aircraft performance
 - Fuel and weight
- No consensus on how often operators would use RW 16/34
- In calm winds / clear conditions: Runway 29 preferred for arrivals and departures

Mead&+lunt

Key Findings – RW 16/34 Utilization

Arrivals on Runway 16

- Use when winds out of south and >10 knots
 - 160-195 true heading
- Use during low visibility
 - Use of the straight-in LPV approach
 - May outweigh the loss in runway length

Key Findings – RW 16/34 Utilization

Departures on Runway 34

- Lower climb gradient
 - RW 29 may be preferred for departures on hot days
 - Jets may be able to take on more fuel for longer range flights
- Reservations on taxiing distance to 34 end

Pilot and Operator Interviews – Other Key Findings

- Most operators would use 16/34 during calm conditions if directed by Air Traffic and conditions are safe
- Any additional instrument procedure or runway will enhance safety
- Possibility for more operations with LPV approach
- Possibility for more night operations
- General support for RW 2/20 lengthening and widening
- Some operators do not believe the LPV provides any benefit over the LP on RW 20
- General concern on taxiing distance

- Prevailing winds
 - Warmer months Winds out of SW, shifting to WSW in the afternoon
 - Winter Relatively calmer conditions
 - Calm Wind Conditions Vary between 40% and 60% of the time between 6:00 AM and 11:00 PM
- Periods of low visibility (below 1.5 nautical miles) are rare
 - Usually associated with a storm and airport may be closed
 - Most operators will not fly into TRK when conditions are near visibility minimums

Wind Data

Calm Wind: 63.1%

• Calm Wind: 40.3%

• Calm Wind: 41.9%

(Between 6:00 AM and 11:00 PM)

• Percentages on existing runways

Arrivals	11	29	2	20
Piston	5%	56%	10%	29%
Turboprop	7%	66%	5%	21%
Jet 2-3	11%	74%	1%	14%
Jet 4-5	20%	72%	1%	8%
TOTAL OPS	8%	61%	7%	24%

 June 1, 2020 – May 31, 2021

• Percentages on proposed runways

Arrivals	11	29	2	20	16	34
Piston	4%	49%	8%	23%	16%	0%
Turboprop	6%	55%	4%	18%	17%	0%
Jet 2-3	7%	50%	1%	10%	31%	0%
Jet 4-5	12%	50%	1%	6%	30%	0%
TOTAL OPS	5%	51%	6%	19%	19%	0%

• Percentages on existing runways

Departures	11	29	2	20
Piston	6%	44%	29%	21%
Turboprop	8%	72%	9%	10%
Jet 2-3	8%	87%	2%	3%
Jet 4-5	1%	96%	1%	2%
TOTAL OPS	6%	58%	20%	16%

 June 1, 2020 – May 31, 2021

• Percentages on proposed runways

Departures	11	29	2	20	16	34
Piston	5%	34%	19%	19%	1%	22%
Turboprop	6%	62%	7%	6%	0%	19%
Jet 2-3	5%	61%	1%	3%	0%	30%
Jet 4-5	1%	67%	1%	1%	0%	30%
TOTAL OPS	5%	45%	13%	13%	0%	23%

Next Steps

Next Steps – Master Plan

- Continue Runway Feasibility Study
- Finalize use estimates on Runway 16/34
- Alternative analysis
- Evaluate overflight, safety, and noise impacts on community
- Continue to present findings to the public
 - Public outreach workshop: In-person May 3
 - Details available on airport website
- Learn about the projects any time at <u>truckeetahoeairport.com</u>

Two Breakout Rooms

Master Plan and Runway 16/34

Instrument Procedures

