ATO Program Management Organization

ADS-B Program Status

Presented to: A4A CNS Task Force By: Doug Arbuckle Date: December 12, 2018

ADS-B Out Rulemaking

January 1, 2020, the FAA Final Rule for ADS-B Out equipage

- Published on May 27, 2010
- This rule applies to aircraft that desire to access certain airspace (14 CFR 91.225)
- This rule mandates performance requirements for ADS-B avionics that fly in certain airspace (14 CFR 91.227)
- ADS-B Out transmits location information received from the Global Navigation Satellite System (GNSS) out of the aircraft to ADS-B receiver stations and to other aircraft equipped to receive ADS-B broadcasts. The rule does not preclude other navigation source methods.
- This rule applies to all airspace that requires a transponder today
- This rule does not mandate ADS-B In

Required ADS-B Airspace

Visit https://www.faa.gov/nextgen/equipadsb/research/airspace/

Exemption 12555 Summary

- not an extension of the rule compliance date
- a five year limited exemption <u>only from 91.227(c)(1)(i) & (iii)</u> the NIC and NACp requirements – under the following conditions and limitations:
 - Each operator seeking exemption must have sent their application to FAA by 1-Aug-2018
 - Operators of SA-Aware equipped aircraft with the Exemption are not required to conduct preflight verification; such operators are exempted from the performance requirements in 14 CFR §91.225 when their ADS-B Out equipment is not predicted to meet the requirements of §91.227(c)(1)(i) and (iii)
 - Operators of SA-On equipped aircraft must conduct preflight verification; operators with the Exemption may operate in airspace specified in §91.225 when their ADS-B Out equipment does not meet the requirements of §91.227(c)(1)(i) or (iii) and the FAA determines there is a backup means of surveillance
 - FAA will make this determination available through the Service Availability Prediction Tool (SAPT)

*Pilot services not provided in Mexican Service Volumes

As 12-01-2018

ADS-B Service Volumes: EnRoute, Terminal, and Surface

As of 1-Dec-18

December 2018 Equipage(good installs) Rule Driven ADS-B Out Aircraft Detected by FAA network

Category	As of 1-November 2018 (ATAT)	As of 1-December 2018 (ATAT)	Monthly Increase	
All Link Version 2	60,290	62,142	1,852	3.07%
1090ES	52,454	54,161	1,707	3.25%
UAT	6,866	7,008	142	2.07%
Dual	968	973	5	0.52%
US General Aviation (includes EXP & LSA)	48,757	50,167	1,410	2.89%
US Air Carrier	3,215	3,492	277	8.62%
Intl General Aviation*	3,599	3,732	133	3.70%
Intl Air Carrier	1,200	1,249	49	4.08%
U.S. Military & U.S. Special Use	618	677	59	9.55%

*Aircraft incorrectly reporting outside US ICAO block are included in Intl GA count.

US Air Carrier Equipage & Avionics Performance

Equipage Status - U.S. Air Carriers as of 1-Dec-2018

Equipped Operations – Heat Maps Percent ADS-B Out V2 Compliant Jun 2018 to

Sep 2018

Class E Non-Rule Airspace

Sep Class E noorule V2 Compliant

Equipped Operations – Heat Maps Sep 2018 (Class B with Mode C Veil and Class C airports) V2 compliant

Equipped Operations – Heat Maps

Anchorage 15%

12%

Honolulu

52%

9%

Arctic Coastal 37%

Anchorage

Honolulu

Equipped Operations Summary Sep 2018

September 1 - 15, 2018	Class	ADS-B Out V2 %	ADS-B Out V2 Compliant %	ADS-B IN %
Terminal Rule-Airspace	Class B	41.2%	39.9%	15.0%
	Class C	41.6%	40.3%	17.2%
Terminal Non-Rule-Airspace	Class D	44.6%	41.7%	27.2%
En-Route Rule-Airspace	Class A	42.3%	41.4%	8.1%
EII-ROULE RUIE-AIIspace	Class E	40.4%	39.4%	10.0%
En-Route Non-Rule-Airspace	Class E	47.8%	43.3%	35.2%

June 2018	Class	ADS-B Out V2 %	ADS-B Out V2 Compliant %	ADS-B IN %
Terminal Rule-Airspace	Class B	35.8%	33.0%	13.3%
	Class C	35.5%	31.4%	13.1%
Terminal Non-Rule-Airspace	Class D	44.3%	34.0%	30.6%
En-Route Rule-Airspace	Class A	36.0%	32.1%	6.8%
	Class E	34.4%	30.8%	8.5%
En-Route Non-Rule-Airspace	Class E	38.7%	32.6%	23.1%

Equipped Operations Summary Sep 2018 Top Performing SVs by Percent equipped

Sep 1 - 15, 2018	Class	ADS-B Out V2 %	ADS-B Out V2 Compliant %	ADS-B IN %
	Class B	54.2% Memphis, TN	52.4% Charlotte, NC	31.9% Memphis, TN
		53.2% Charlotte, NC	51.5% Memphis, TN	25.6% Atlanta, GA
		48.9% Boston, MA	48.0% Boston, MA	23.9% Phoenix, AZ
		48.5% Atlanta, GA	46.8% Pittsburgh, PA	23.2% St. Louis, MO
Terminal Rule-		47.8% Pittsburgh, PA	46.6% Atlanta, GA	22.9% Boston, MA
Airspace		99.6% St. Thomas, VI	94.9% San Juan, PR	73.9% St. Thomas, VI
		99.4% San Juan, PR	93.8% St. Thomas, VI	54.7% Daytona Beach, FL
	Class C	73.3% Asheville, NC	68.5% Asheville, NC	49.3% Billings, MT
		65.4% Billings, MT	58.9% Daytona Beach, FL	45.7% San Juan, PR
		60.4% Daytona Beach, FL	55.6% Billings, MT	40.0% Asheville, NC
	Class D	76.6% Bakersfield, CA	74.8% Bakersfield, CA	60.5% Lynchburg, VA
Terminal Non-Rule		74.3% Casper, WY	67.0% Lynchburg, VA	50.3% Casper, WY
Airspace		67.8% Lynchburg, VA	62.7% Rockford, IL	42.5% Bakersfield, CA
Anspace		64.0% Rockford, IL	57.8% Mesa, AZ	41.6% Mesa, AZ
		59.8% Nantucket, MA	56.7% Casper, WY	41.1% Otis AFB
	Class A	98.2% San Juan	94.0% San Juan	19.3% AK Peninsula
En-Route Rule- Airspace		54.3% AK Peninsula	44.7% Salt Lake City	17.9% Honolulu
	Class E	98.5% San Juan	96.5% San Juan	27.3% Southeast AK
		50.4% Arctic Coastal	48.8% Arctic Coastal	19.9% Salt Lake City
En-Route Non-Rule-	Class E	97.3% San Juan	92.0% San Juan	81.6% Southeast AK
Airspace	CIASS E	87.2% Southeast AK	77.9% Yukon - Kuskokwim Delta	67.9% Yukon - Kuskokwim Delta

FAA currently tracked ADS-B avionics problems

- Baro/Geo Altitude Spikes
- Missing Baro Altitude
- Missing Flight ID
- Missing Mode 3/A
- Kinematic Issues (aka, "position jumping")
- Duplicate & Wrong ICAOs
- Air/Ground determination issues
- Incorrect Emitter Category
- Flight ID Error (includes Partial Flight ID)
- B787 and TSS-4100 (Rockwell ProLine TCAS/transponder unit) erroneous position *(Airworthiness Directives issued)*
- E170 position jumping
- A380 Flight ID change on Surface
- A380 Geo Altitude (SB available)
- B777-300ERs delivered with wiring error, resulting in noncompliant NACv/SDA/EmitCat/Length-Width Code (SB available)
- Airbus single aisle missing Length-Width Code due to production wiring error (SB available)

Federal Aviation

Administration

Unique to UAT

Both links

Unique to 1090

16

<u>Issue</u>

- 11-Jun-2016, UAL33, on downwind for final approach at LAX (see picture, right)
- B787 Integrated Surveillance System (ISS) extrapolated position along a straight line based on current track, while sending "good" quality parameters
- Problem detected by SBS validation after radar and ADS-B positions differed by 0.56nm (where green line becomes red)
- FAA ADS-B Performance Monitor observed multiple additional arrival & departure events on different B787s in 2016-2017
- Problem has not reoccurred yet on same aircraft

B787 avionics problem

Solution(s)

- Boeing/Rockwell determined root cause; Boeing implemented fix for production aircraft starting with Line# 542; Service Bulletin B787-81205-SB340036-00 available
- FAA implemented tighter position validation within 15nm of airports with an SSR and implemented a No Services Aircraft List (https://www.federalregister.gov/documents/2017/12/20/2017-27202/change-to-automatic-dependent-surveillance-broadcast-see
- FAA issued Airworthiness Directive 2017-NM-118-AD, effective 10-Dec-2018, which requires application of above listed Boeing SB within one year

E170 avionics problem

<u>Issue</u>

- In late October 2016, a Skywest E170 was detected exhibiting "track jumping"
 - -FAA Air Traffic personnel notified Flight Standards, who contacted operator and ordered replacement of the transponders
 - Unfortunately, these transponders were returned to a service center without notification to Honeywell engineering, and no debugging testing was performed
- In late July 2017, early August 2017, and mid-January 2018, FAA detected E170 aircraft from two different airlines exhibiting "track jumping" behavior
 - –FAA notified both operators and Honeywell engineering, and the transponders were removed from the aircraft and sent to Honeywell engineering for testing. Bench testing revealed no apparent issues.
- In all cases to date, removing and replacing transponders cleared issue – problem has not reoccurred on same aircraft
 - -Bench testing of removed transponders has revealed no anomalies
 - -FAA has decided that next E170 aircraft detected with this issue will be immediately placed on No Services Aircraft List (NSAL); simultaneously, FAA will notify Embraer and Honeywell and request that appropriate engineering personnel be sent to inspect and test affected aircraft

Solution(s)

- Use NSAL as "defense"
- Avionics root cause TBD

<u>Issue</u>

• On 21 Dec 2017, FAA monitoring observed a track extrapolation by an Embraer business jet equipped with a Rockwell Collins TSS-4100 transponder

-track extrapolation lasted for over 450nm

• TSS-4100 shares software with B787 ISS, so software defect in B787 ISS also exists in TSS-4100

Solution(s)

- Rockwell Collins reported TSS-4100 TSO noncompliance to FAA once the B787 ISS software issue was diagnosed; TSS-4100 shipments were stopped until software defect was corrected
- Airworthiness Directive (AD) 2017-22-14 was issued on 20 Dec 2017 and can be found online at:

http://rgl.faa.gov/Regulatory_and_Guidance_Library/rgad.nsf/0/f2fdf0b259d98e a4862581d9004fa2d1/\$FILE/2017-22-14.pdf

• Compliance date for this AD is 20 Dec 2018 (or 750 hours in service, whichever occurs first)

TSS-4100 issue

Solution(s), continued

- FAA determined that actions required by AD had not been performed
- After communicating with operator, FAA placed this aircraft on No Services Aircraft List (NSAL) until actions required under AD 2017-22-14 were completed; aircraft has since been removed from NSAL

ADS-B In Future Applications

- ADS-B In applications are an integral part of the future National Airspace System (NAS)
- ADS-B In supports increased pilot situational awareness, traffic alerting, and operational efficiencies in the NAS today
- Current challenges facing future applications include benefits demonstration, funding requirements, and industry consensus
- FAA continues to support when possible
 - Currently leveraging opportunity to assess benefits including a public-private partnership to demonstrate operational feasibility and value of an ADS-B In (see upcoming slide 24)

TSO-C195b ADS-B-In Applications

Advanced Interval Management (A-IM)

Arrivals & Approach | Flight-deck Integration | DataComm

- **Description:** Develop advanced applications to enable relative spacing ground and airborne capabilities for implementation into the NAS in the mid-term environment
- Goals: Maximize airspace throughput and reduce delays in the NAS
- **Objective:** Publish A-IM SPR, MOPS (avionics standards) Integrate A-IM ConOps
- Partners: FAA, RTCA SC-186/WG-4, SC-214/WG-78, SC-227

Key Project Milestones

Complete In Progress

ss Not Yet Started

FAA-AAL-ACSS ADS-B In Retrofit Spacing Evaluation

- **Description**: Operational evaluation of partial IM spacing capabilities and CAVS for arrivals into PHX using certified ACSS equipment on AAL A321 aircraft (entire fleet)
- **Goal**: Demonstrate operational feasibility and value of an ADS-B In retrofit solution that could enable early adoption of IM, CAVS and other ADS-B In applications
- **Objectives**: Promote adoption of ADS-B In applications

Support ADS-B In industry initiatives by gathering data in an operational environment

Gather insight for building FAA business case for IM

SW-4, 05 JAN 2017 to 02 FEB 2017

Operational evaluation proposed for AAL westbound arrivals through Albuquerque Center to PHX

Partners: FAA, NATCA, ACSS, AAL

Key Project Milestones

Not Yet Started

What Has Changed for ASEPS

- Original Scope for ASEPS: Reduced oceanic separation service below 30 nautical mile (NM) lateral and 30 NM longitudinal separation (30/30) to enhance operations in U.S. oceanic airspace using Space-based ADS-B (SBA) and/or ADS-C with an increased update rate
- FAA recognizes the benefits of SBA and its potential for the future in the U.S. and internationally
- FAA also has a need to better prove out the SBA technology before committing to a long-term investment, due largely to operational constraints and a current lack of operational need
 - ANSP handoff coordination is efficient today
 - No capacity issue exists today or is expected in the future
 - Reduced separation is constrained by convective weather
 - FANS 1/A equipage is too low in certain airspace (e.g. FANS 1/A equipage in WATRS is projected to be 76% by 2020)
 - Communication latency and controller reaction time limit how oceanic airspace can be managed
 - Unmitigated safety hazards exist
- This led FAA to a strategic shift (Pivots), identifying short-term opportunities to leverage work done to date that contribute to a long-term solution in the future

New Strategy / Pivot Overview

	Pivot	2018	2019	2020	2021	2022 - beyond	Outcome
1	ASEPS Now with ATOP Reduced Separation					•Full ADS-C Capability	23/20 reduced oceanic separation for suitably equipped aircraft pairs
2	SBA Operational Evaluation	·	ADS-B Coverage		sep	A for 5NM • paration • ERAM)	Near term benefits of SBA Ability to prove out the technology
3	Continued ATOP SBA Testing		to evaluate futu		Exis	egration of • sting ctionality	Leverage continued development of ATOP for future oceanic operations
4	ASEPS Future (Further analysis of SBA in Ocean)	 ConOps Communica Tactical / Pr 	itions i.e. PTT rocedural	 Automatic (ATOP/Ot Weather 		`	Further reduction in oceanic separation supported by more efficient Communications
5	SBA Partial Disaster Recovery	contract will bPivot #5 is co	dependent on s be modified in the ontingent upon co ion upgrades, S	e near term ompleting near	r term Pivot #	[#] 2 activities	 Surveillance on-demand when ground surveillance infrastructure becomes unavailable

ASEPS Path Forward

SBS ASEPS has been approved to proceed with the following activities:

- Pivot #1: Proceeding to a Final Investment Decision (FID) on ADS-C 23/20 in February 2019
- Pivot #2: Initiating near-term Operational Evaluation (Op Eval) of space-based ADS-B (SBA) in the Caribbean on ERAM
- **Pivot #3:** Maturing and continuing ATOP SBA testing activities
- **Pivot #4 and #5:** Exploring and maturing long term strategies for future analysis of SBA in the ocean and a partial disaster recovery capability

FAA-managed Caribbean Airspace

Figure 1: Caribbean Airspace Sectors

Data SID, NOAA, U.S. Navy, NGA, CEBCO

2114010.50* H 70140'34.83* W Hav-9100 N - eye at 1412.83 ----

Federal Aviation Administration

Caribbean Airspace Optimization and Potential VHF Communications Coverage

Key:

Potential VHF Comm Coverage (shaded area)

Proposed shortcut route

Discontinuing FAA Services to LV1 aircraft

- Aircraft equipped with ADS-B Out Version 1 will no longer receive the following services after January 1, 2020
 - ATC surveillance services using ADS-B (impacts Alaska and Gulf of Mexico only)
 - ADS-SLR (impacts all airports with ASDE-X and ASSC)
 - TIS-B and ADS-R Client services (NAS-wide impact)
- Also, requirement that NACv>0 to receive TIS-B/ADS-R Client services will be reinstated (see 2016 TIS-B Service Change Summary posted in RGL on TSO-C195b page)
- FAA will begin making above changes on January 2, 2020
 - Since changes require implementation of software revisions and some require changes at multiple locations NAS-wide, all changes will not be completed on January 2, 2020, but sometime soon thereafter
- Notice FAA-2018-0914 appeared in the Federal Register on 5-Nov-2018

FAA Next Steps

- Continue rollout of Air Traffic Control Separation Services
- Monitor avionics compliance and work with industry on the Equip 2020 initiative
- Prepare for JRC requests
 - Various ASEPS Pivot Strategy decisions (slide 26)
 - A-IM Strategy decision
 - Final Investment Decision for the Next Segment of the "Baseline" SBS Program (FY20-25 funding)

Operator Next Steps

- Considerations for the U.S. ADS-B mandate
 - Version 2 ADS-B transmitter
 - Compliant position source approved to "pair" with V2 ADS-B transmitter
 - Aircraft wiring as needed
- 1 year, 20 days to go!

Acronyms

ADS-B: Automatic Dependent Surveillance – Broadcast ADS-R: Automatic Dependent Surveillance - Rebroadcast AML: Approved Model List **APB: Acquisition Program Baseline** ASSC: Airport Surface Surveillance Capability ATC: Air Traffic Control ATOP: Advanced Technologies and Oceanic Procedures ConOps: Concept of Operations **ES: Extended Squitter** FIM-S: Flight Deck Based Interval Management - Spacing FIS-B: Flight Information Services - Broadcast GIM-S: Ground-Based Interval Management - Spacing GOM: Gulf of Mexico **IOC:** Initial Operating Capability **ISAT: Implementation Service Acceptance Test** ITP: In Trail Procedures MFD: Multi-Function Display MHz: Megahertz MOPS: Minimum Operational Performance Standards

NCT: Northern Cal TRACON

NM: Nautical Mile

- O&M: Operations and Maintenance
- PED: Portable Electronic Device
- RIO: Risks, Issues, and Opportunities
- SBS: Surveillance and Broadcast Services
- SFO: San Francisco International Airport
- STC: Supplemental Type Certificate
- SVR: Service Volume Rollout
- TAMR: Terminal Automation Modernization and Replacement
- TIS-B: Traffic Information Services Broadcast
- TRACON: Terminal Radar Approach Control
- TSAA: Traffic Situation Awareness with Alerts
- UAT: Universal Access Transceiver

